zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 11.

Publikation

Niemeyer, M.; Moreno Castillo, E.; Ihling, C. H.; Iacobucci, C.; Wilde, V.; Hellmuth, A.; Hoehenwarter, W.; Samodelov, S. L.; Zurbriggen, M. D.; Kastritis, P. L.; Sinz, A.; Calderón Villalobos, L. I. A.; Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin co-receptor assemblies Nat. Commun. 11, 2277, (2020) DOI: 10.1038/s41467-020-16147-2

Cullin RING-type E3 ubiquitin ligases SCFTIR1/AFB1-5 and their AUX/IAA targets perceive the phytohormone auxin. The F-box protein TIR1 binds a surface-exposed degron in AUX/IAAs promoting their ubiquitylation and rapid auxin-regulated proteasomal degradation. Here, by adopting biochemical, structural proteomics and in vivo approaches we unveil how flexibility in AUX/IAAs and regions in TIR1 affect their conformational ensemble allowing surface accessibility of degrons. We resolve TIR1·auxin·IAA7 and TIR1·auxin·IAA12 complex topology, and show that flexible intrinsically disordered regions (IDRs) in the degron’s vicinity, cooperatively position AUX/IAAs on TIR1. We identify essential residues at the TIR1 N- and C-termini, which provide non-native interaction interfaces with IDRs and the folded PB1 domain of AUX/IAAs. We thereby establish a role for IDRs in modulating auxin receptor assemblies. By securing AUX/IAAs on two opposite surfaces of TIR1, IDR diversity supports locally tailored positioning for targeted ubiquitylation, and might provide conformational flexibility for a multiplicity of functional states.
Preprints

Niemeyer, M.; Moreno Castillo, E.; Ihling, C. H.; Iacobucci, C.; Wilde, V.; Hellmuth, A.; Hoehenwarter, W.; Samodelov, S. L.; Zurbriggen, M. D.; Kastritis, P. L.; Sinz, A.; Calderón Villalobos, L. I. A.; Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin receptor assemblies bioRxiv (2019) DOI: 10.1101/787770

Cullin RING-type E3 ubiquitin ligases SCFTIR1/AFB1-5 and their ubiquitylation targets, AUX/IAAs, sense auxin concentrations in the nucleus. TIR1 binds a surface-exposed degron in AUX/IAAs promoting their ubiquitylation and rapid auxin-regulated proteasomal degradation. Here, we resolved TIR1·auxin·IAA7 and TIR1·auxin·IAA12 complex topology, and show that flexible intrinsically disordered regions (IDRs) in the degron′s vicinity, cooperatively position AUX/IAAs on TIR1. The AUX/IAA PB1 interaction domain also assists in non-native contacts, affecting AUX/IAA dynamic interaction states. Our results establish a role for IDRs in modulating auxin receptor assemblies. By securing AUX/IAAs on two opposite surfaces of TIR1, IDR diversity supports locally tailored positioning for targeted ubiquitylation and might provide conformational flexibility for adopting a multiplicity of functional states. We postulate IDRs in distinct members of the AUX/IAA family to be an adaptive signature for protein interaction and initiation region for proteasome recruitment.
Publikation

Bochnia, M.; Sander, J.; Ziegler, J.; Terhardt, M.; Sander, S.; Janzen, N.; Cavalleri, J.-M. V.; Zuraw, A.; Wensch-Dorendorf, M.; Zeyner, A.; Detection of MCPG metabolites in horses with atypical myopathy PLOS ONE 14, e0211698, (2019) DOI: 10.1371/journal.pone.0211698

Atypical myopathy (AM) in horses is caused by ingestion of seeds of the Acer species (Sapindaceae family). Methylenecyclopropylacetyl-CoA (MCPA-CoA), derived from hypoglycin A (HGA), is currently the only active toxin in Acer pseudoplatanus or Acer negundo seeds related to AM outbreaks. However, seeds or arils of various Sapindaceae (e.g., ackee, lychee, mamoncillo, longan fruit) also contain methylenecyclopropylglycine (MCPG), which is a structural analogue of HGA that can cause hypoglycaemic encephalopathy in humans. The active poison formed from MCPG is methylenecyclopropylformyl-CoA (MCPF-CoA). MCPF-CoA and MCPA-CoA strongly inhibit enzymes that participate in β-oxidation and energy production from fat. The aim of our study was to investigate if MCPG is involved in Acer seed poisoning in horses. MCPG, as well as glycine and carnitine conjugates (MCPF-glycine, MCPF-carnitine), were quantified using high-performance liquid chromatography-tandem mass spectrometry of serum and urine from horses that had ingested Acer pseudoplatanus seeds and developed typical AM symptoms. The results were compared to those of healthy control horses. For comparison, HGA and its glycine and carnitine derivatives were also measured. Additionally, to assess the degree of enzyme inhibition of β-oxidation, several acyl glycines and acyl carnitines were included in the analysis. In addition to HGA and the specific toxic metabolites (MCPA-carnitine and MCPA-glycine), MCPG, MCPF-glycine and MCPF-carnitine were detected in the serum and urine of affected horses. Strong inhibition of β-oxidation was demonstrated by elevated concentrations of all acyl glycines and carnitines, but the highest correlations were observed between MCPF-carnitine and isobutyryl-carnitine (r = 0.93) as well as between MCPA- (and MCPF-) glycine and valeryl-glycine with r = 0.96 (and r = 0.87). As shown here, for biochemical analysis of atypical myopathy of horses, it is necessary to take MCPG and the corresponding metabolites into consideration.
Publikation

Bochnia, M.; Scheidemann, W.; Ziegler, J.; Sander, J.; Vollstedt, S.; Glatter, M.; Janzen, N.; Terhardt, M.; Zeyner, A.; Predictive value of hypoglycin A and methylencyclopropylacetic acid conjugates in a horse with atypical myopathy in comparison to its cograzing partners Equine Vet. Educ. 30, 24-28, (2018) DOI: 10.1111/eve.12596

Hypoglycin A (HGA) was detected in blood and urine of a horse suffering from atypical myopathy (AM; Day 2, serum, 8290 μg/l; urine: Day 1, 574, Day 2, 742 μg/l) and in its cograzing partners with a high variability (46–1570 μg/l serum). Over the period of disease, the level of the toxic metabolites (methylencyclopropylacetic acid [MCPA]‐conjugates) increased in body fluids of the AM horse (MCPA‐carnitine: Day 2, 0.246, Day 3, 0.581 μmol/l serum; MCPA‐carnitine: Day 2, 0.621, Day 3, 0.884 μmol/mmol creatinine in urine) and HGA decreased rapidly (Day 3, 2430 μg/l serum). In cograzing horses MCPA‐conjugates were not detected. HGA in seeds ranged from 268 to 367 μg/g. Although HGA was present in body fluids of healthy cograzing horses, MCPA‐conjugates were not detectable, in contrast to the AM horse. Therefore, increasing concentrations of MCPA‐conjugates are supposed to be linked with the onset of AM and both parameters seem to indicate the clinical stage of disease. However, detection of HGA in body fluids of cograzing horses might be a promising step in preventing the disease.
Publikation

Krägeloh, T.; Cavalleri, J. M. V.; Ziegler, J.; Sander, J.; Terhardt, M.; Breves, G.; Cehak, A.; Identification of hypoglycin A binding adsorbents as potential preventive measures in co-grazers of atypical myopathy affected horses Equine Vet. J. 50, 220-227, (2018) DOI: 10.1111/evj.12723

BackgroundIntestinal absorption of hypoglycin A (HGA) and its metabolism are considered major prerequisites for atypical myopathy (AM). The increasing incidence and the high mortality rate of AM urgently necessitate new therapeutic and/or preventative approaches.ObjectivesTo identify a substance for oral administration capable of binding HGA in the intestinal lumen and effectively reducing the intestinal absorption of the toxin.Study designExperimental in vitro study.MethodsSubstances commonly used in equine practice (activated charcoal composition, di‐tri‐octahedral smectite, mineral oil and activated charcoal) were tested for their binding capacity for HGA using an in vitro incubation method. The substance most effective in binding HGA was subsequently tested for its potential to reduce intestinal HGA absorption. Jejunal tissues of 6 horses were incubated in Ussing chambers to determine mucosal uptake, tissue accumulation, and serosal release of HGA in the presence and absence of the target substance. Potential intestinal metabolism in methylenecyclopropyl acetic acid (MCPA)‐conjugates was investigated by analysing their concentrations in samples from the Ussing chambers.ResultsActivated charcoal composition and activated charcoal were identified as potent HGA binding substances with dose and pH dependent binding capacity. There was no evidence of intestinal HGA metabolism.Main limitationsBinding capacity of adsorbents was tested in vitro using aqueous solutions, and in vivo factors such as transit time and composition of intestinal content, may affect adsorption capacity after oral administration.ConclusionsFor the first time, this study identifies substances capable of reducing HGA intestinal absorption. This might have major implications as a preventive measure in cograzers of AM affected horses but also in horses at an early stage of intoxication.
Publikation

Winkler, M.; Niemeyer, M.; Hellmuth, A.; Janitza, P.; Christ, G.; Samodelov, S. L.; Wilde, V.; Majovsky, P.; Trujillo, M.; Zurbriggen, M. D.; Hoehenwarter, W.; Quint, M.; Calderón Villalobos, L. I. A.; Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction Nat. Commun. 8, 15706, (2017) DOI: 10.1038/ncomms15706

Auxin is a small molecule morphogen that bridges SCFTIR1/AFB-AUX/IAA co-receptor interactions leading to ubiquitylation and proteasome-dependent degradation of AUX/IAA transcriptional repressors. Here, we systematically dissect auxin sensing by SCFTIR1-IAA6 and SCFTIR1-IAA19 co-receptor complexes, and assess IAA6/IAA19 ubiquitylation in vitro and IAA6/IAA19 degradation in vivo. We show that TIR1-IAA19 and TIR1-IAA6 have distinct auxin affinities that correlate with ubiquitylation and turnover dynamics of the AUX/IAA. We establish a system to track AUX/IAA ubiquitylation in IAA6 and IAA19 in vitro and show that it occurs in flexible hotspots in degron-flanking regions adorned with specific Lys residues. We propose that this signature is exploited during auxin-mediated SCFTIR1-AUX/IAA interactions. We present evidence for an evolving AUX/IAA repertoire, typified by the IAA6/IAA19 ohnologues, that discriminates the range of auxin concentrations found in plants. We postulate that the intrinsic flexibility of AUX/IAAs might bias their ubiquitylation and destruction kinetics enabling specific auxin responses.
Bücher und Buchkapitel

Hellmuth, A.; Calderón Villalobos, L. I. A.; Radioligand Binding Assays for Determining Dissociation Constants of Phytohormone Receptors (Lois, L. M. & Matthiesen, R., eds.). Methods Mol. Biol. 1450, 23-34, (2016) ISBN: 978-1-4939-3759-2 DOI: 10.1007/978-1-4939-3759-2_3

In receptor–ligand interactions, dissociation constants provide a key parameter for characterizing binding. Here, we describe filter-based radioligand binding assays at equilibrium, either varying ligand concentrations up to receptor saturation or outcompeting ligand from its receptor with increasing concentrations of ligand analogue. Using the auxin coreceptor system, we illustrate how to use a saturation binding assay to determine the apparent dissociation constant (K D ′ ) for the formation of a ternary TIR1–auxin–AUX/IAA complex. Also, we show how to determine the inhibitory constant (Ki) for auxin binding by the coreceptor complex via a competition binding assay. These assays can be applied broadly to characterize a one-site binding reaction of a hormone to its receptor.
Publikation

Dinesh, D. C.; Kovermann, M.; Gopalswamy, M.; Hellmuth, A.; Calderón Villalobos, L. I. A.; Lilie, H.; Balbach, J.; Abel, S.; Solution structure of the PsIAA4 oligomerization domain reveals interaction modes for transcription factors in early auxin response Proc. Natl. Acad. Sci. U.S.A. 112, 6230-6235, (2015) DOI: 10.1073/pnas.1424077112

The plant hormone auxin activates primary response genes by facilitating proteolytic removal of AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA)-inducible repressors, which directly bind to transcriptional AUXIN RESPONSE FACTORS (ARF). Most AUX/IAA and ARF proteins share highly conserved C-termini mediating homotypic and heterotypic interactions within and between both protein families. The high-resolution NMR structure of C-terminal domains III and IV of the AUX/IAA protein PsIAA4 from pea (Pisum sativum) revealed a globular ubiquitin-like β-grasp fold with homologies to the Phox and Bem1p (PB1) domain. The PB1 domain of wild-type PsIAA4 features two distinct surface patches of oppositely charged amino acid residues, mediating front-to-back multimerization via electrostatic interactions. Mutations of conserved basic or acidic residues on either face suppressed PsIAA4 PB1 homo-oligomerization in vitro and confirmed directional interaction of full-length PsIAA4 in vivo (yeast two-hybrid system). Mixing of oppositely mutated PsIAA4 PB1 monomers enabled NMR mapping of the negatively charged interface of the reconstituted PsIAA4 PB1 homodimer variant, whose stoichiometry (1:1) and equilibrium binding constant (KD ∼6.4 μM) were determined by isothermal titration calorimetry. In silico protein–protein docking studies based on NMR and yeast interaction data derived a model of the PsIAA4 PB1 homodimer, which is comparable with other PB1 domain dimers, but indicated considerable differences between the homodimeric interfaces of AUX/IAA and ARF PB1 domains. Our study provides an impetus for elucidating the molecular determinants that confer specificity to complex protein–protein interaction circuits between members of the two central families of transcription factors important to the regulation of auxin-responsive gene expression.
Publikation

Bochnia, M.; Ziegler, J.; Sander, J.; Uhlig, A.; Schaefer, S.; Vollstedt, S.; Glatter, M.; Abel, S.; Recknagel, S.; Schusser, G. F.; Wensch-Dorendorf, M.; Zeyner, A.; Hypoglycin A Content in Blood and Urine Discriminates Horses with Atypical Myopathy from Clinically Normal Horses Grazing on the Same Pasture PLOS ONE 10, e0136785, (2015) DOI: 10.1371/journal.pone.0136785

Hypoglycin A (HGA) in seeds of Acer spp. is suspected to cause seasonal pasture myopathy in North America and equine atypical myopathy (AM) in Europe, fatal diseases in horses on pasture. In previous studies, this suspicion was substantiated by the correlation of seed HGA content with the concentrations of toxic metabolites in urine and serum (MCPA-conjugates) of affected horses. However, seed sampling was conducted after rather than during an outbreak of the disease. The aim of this study was to further confirm the causality between HGA occurrence and disease outbreak by seed sampling during an outbreak and the determination of i) HGA in seeds and of ii) HGA and MCPA-conjugates in urine and serum of diseased horses. Furthermore, cograzing healthy horses, which were present on AM affected pastures, were also investigated. AM-pastures in Germany were visited to identify seeds of Acer pseudoplatanus and serum (n = 8) as well as urine (n = 6) from a total of 16 diseased horses were analyzed for amino acid composition by LC-ESI-MS/MS, with a special focus on the content of HGA. Additionally, the content of its toxic metabolite was measured in its conjugated form in body fluids (UPLC-MS/MS). The seeds contained 1.7–319.8 μg HGA/g seed. The content of HGA in serum of affected horses ranged from 387.8–8493.8 μg/L (controls < 10 μg/L), and in urine from 143.8–926.4 μg/L (controls < 10 μg/L), respectively. Healthy cograzing horses on AM-pastures showed higher serum (108.8 ± 83.76 μg/L) and urine concentrations (26.9 ± 7.39 μg/L) compared to control horses, but lower concentrations compared to diseased horses. The range of MCPA-carnitine and creatinine concentrations found in diseased horses in serum and urine were 0.17–0.65 mmol/L (controls < 0.01), and 0.34–2.05 μmol/mmoL (controls < 0.001), respectively. MCPA-glycine levels in urine of cograzing horses were higher compared to controls. Thus, the causal link between HGA intoxication and disease outbreak could be further substantiated, and the early detection of HGA in cograzing horses, which are clinically normal, might be a promising step in prophylaxis.
Publikation

Moss, B. L.; Mao, H.; Guseman, J. M.; Hinds, T. R.; Hellmuth, A.; Kovenock, M.; Noorassa, A.; Lanctot, A.; Calderón Villalobos, L. I. A.; Zheng, N.; Nemhauser, J. L.; Rate Motifs Tune Auxin/Indole-3-Acetic Acid Degradation Dynamics Plant Physiol. 169, 803-813, (2015) DOI: 10.1104/pp.15.00587

Ubiquitin-mediated protein degradation is a common feature in diverse plant cell signaling pathways; however, the factors that control the dynamics of regulated protein turnover are largely unknown. One of the best-characterized families of E3 ubiquitin ligases facilitates ubiquitination of auxin (aux)/indole-3-acetic acid (IAA) repressor proteins in the presence of auxin. Rates of auxin-induced degradation vary widely within the Aux/IAA family, and sequences outside of the characterized degron (the minimum region required for auxin-induced degradation) can accelerate or decelerate degradation. We have used synthetic auxin degradation assays in yeast (Saccharomyces cerevisiae) and in plants to characterize motifs flanking the degron that contribute to tuning the dynamics of Aux/IAA degradation. The presence of these rate motifs is conserved in phylogenetically distant members of the Arabidopsis (Arabidopsis thaliana) Aux/IAA family, as well as in their putative Brassica rapa orthologs. We found that rate motifs can act by enhancing interaction between repressors and the E3, but that this is not the only mechanism of action. Phenotypes of transgenic plants expressing a deletion in a rate motif in IAA28 resembled plants expressing degron mutations, underscoring the functional relevance of Aux/IAA degradation dynamics in regulating auxin responses.
IPB Mainnav Search