zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 6 von 6.

Publikation

Gasperini, D., Chauvin, A., Acosta, I.F., Kurenda, A., Stolz, S., Chétalat, A., Wolfender J.-L. & Farmer, E.E. Axial and Radial Oxylipin Transport. Plant Physiol. 169, 2244-2254, (2015) DOI: 10.1104/pp.15.01104

0
Publikation

Gasperini, D., Chételat, A., Acosta, I.F., Goossens, J., Pauwels, L., Goossens, A., Dreos, R., Alonso, E. & Farmer, E.E. Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth PLoS Genet. 11 (6), e1005300, (2015) DOI: 10.1371/journal.pgen.1005300

Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage.

Publikation

Acosta, I.F., Gasperini, D., Chételat, A., Stolz, S., Santuari, L. & Farmer, E.E. Role of NINJA in root jasmonate signaling. In: PNAS 110 (38), 15473-15478, (2013) DOI: 10.1073/pnas.1307910110

0
Publikation

Grubb, C.D., Gross, H.B., Chen, D.L. & Abel, S. Identification of Arabidopsis mutants with altered glucosinolate profiles based on isothiocyanate bioactivity Plant Sci 162, 143 - 152, (2002) DOI: 10.1016/S0168-9452(01)00550-7

Glucosinolates are a diverse class of nitrogen- and sulfur-containing secondary metabolites. They are rapidly hydrolyzed on tissue disruption to a number of biologically active compounds that are increasingly attracting interest as anticarcinogenic phytochemicals and crop protectants. Several glucosinolate-derived isothiocyanates are potent chemopreventive agents that favorably modulate carcinogen metabolism in mammals. Methylsulfinylalkyl isothiocyanates, in particular the 4-methylsulfinylbutyl derivative, are selective and potent inducers of mammalian detoxification enzymes such as quinone reductase (QR). Cruciferous plants including Arabidopsis thaliana (L.) Heyhn, synthesize methylsulfinylalkyl glucosinolates, which are derived from methionine. Using a colorimetric assay for QR activity in murine hepatoma cells and high performance liquid chromatography (HPLC) analysis of desulfoglucosinolates, we have demonstrated a strong positive correlation between leaf QR inducer potency and leaf content of methionine-derived glucosinolates in various A. thaliana ecotypes and available glucosinolate mutants. In a molecular genetic approach to glucosinolate biosynthesis, we screened 3000 chemically mutagenized M2 plants of the Columbia ecotype for altered leaf QR inducer potency. Subsequent HPLC analysis of progeny of putative mutants identified six lines with significant and heritable changes in leaf glucosinolate content and composition.

Publikation

Chen, D.L., Delatorre,.C.A., Bakker, A. & Abel, S. Conditional identification of phosphate starvation-response mutants in Arabidopsis thaliana Planta 211, 13 - 22, (2000)

0
Publikation

Colon-Carmona, A., Chen, D.L., Yeh, K.C. & Abel, S. Aux/IAA proteins are phosphorylated by phytochrome in vitro Plant Physiology 124, 1728-1738, (2000)

Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived transcription factors that are induced as a primary response to the plant growth hormone IAA or auxin. Gain-of-function mutations in Arabidopsis genes,SHY2/IAA3, AXR3/IAA17, andAXR2/IAA7 cause pleiotropic phenotypes consistent with enhanced auxin responses, possibly by increasing Aux/IAA protein stability. Semidominant mutations shy2-1D,shy2-2, axr3-1, and axr2-1induce ectopic light responses in dark-grown seedlings. Because genetic studies suggest that the shy2-1D andshy2-2 mutations bypass phytochrome requirement for certain aspects of photomorphogenesis, we tested whether SHY2/IAA3 and related Aux/IAA proteins interact directly with phytochrome and whether they are substrates for its protein kinase activity. Here we show that recombinant Aux/IAA proteins from Arabidopsis and pea (Pisum sativum) interact in vitro with recombinant phytochrome A from oat (Avena sativa). We further show that recombinant SHY2/IAA3, AXR3/IAA17, IAA1, IAA9, and Ps-IAA4 are phosphorylated by recombinant oat phytochrome A in vitro. Deletion analysis of Ps-IAA4 indicates that phytochrome A phosphorylation occurs on the N-terminal half of the protein. Metabolic labeling and immunoprecipitation studies with affinity-purified antibodies to IAA3 demonstrate increased in vivo steady-state levels of mutant IAA3 in shy2-2 plants and phosphorylation of the SHY2-2 protein in vivo. Phytochrome-dependent phosphorylation of Aux/IAA proteins is proposed to provide one molecular mechanism for integrating auxin and light signaling in plant development.

IPB Mainnav Search