zur Suche springenzur Navigation springenzum Inhalt springen

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Dinesh, D. C.; Calderón Villalobos, L. I. A.; Abel, S.; Structural Biology of Nuclear Auxin Action Trends Plant Sci. 21, 302-316, (2016) DOI: 10.1016/j.tplants.2015.10.019

Auxin coordinates plant development largely via hierarchical control of gene expression. During the past decades, the study of early auxin genes paired with the power of Arabidopsis genetics have unraveled key nuclear components and molecular interactions that perceive the hormone and activate primary response genes. Recent research in the realm of structural biology allowed unprecedented insight into: (i) the recognition of auxin-responsive DNA elements by auxin transcription factors; (ii) the inactivation of those auxin response factors by early auxin-inducible repressors; and (iii) the activation of target genes by auxin-triggered repressor degradation. The biophysical studies reviewed here provide an impetus for elucidating the molecular determinants of the intricate interactions between core components of the nuclear auxin response module.
Bücher und Buchkapitel

Hellmuth, A.; Calderón Villalobos, L. I. A.; Radioligand Binding Assays for Determining Dissociation Constants of Phytohormone Receptors (Lois, L. M. & Matthiesen, R., eds.). Methods Mol. Biol. 1450, 23-34, (2016) ISBN: 978-1-4939-3759-2 DOI: 10.1007/978-1-4939-3759-2_3

In receptor–ligand interactions, dissociation constants provide a key parameter for characterizing binding. Here, we describe filter-based radioligand binding assays at equilibrium, either varying ligand concentrations up to receptor saturation or outcompeting ligand from its receptor with increasing concentrations of ligand analogue. Using the auxin coreceptor system, we illustrate how to use a saturation binding assay to determine the apparent dissociation constant (K D ′ ) for the formation of a ternary TIR1–auxin–AUX/IAA complex. Also, we show how to determine the inhibitory constant (Ki) for auxin binding by the coreceptor complex via a competition binding assay. These assays can be applied broadly to characterize a one-site binding reaction of a hormone to its receptor.
IPB Mainnav Search