jump to searchjump to navigationjump to content

Displaying results 1 to 10 of 3792.

Printed publications

Eysholdt‐Derzsó, E.; Hause, B.; Sauter, M.; Schmidt‐Schippers, R. R.; Hypoxia reshapes Arabidopsis root architecture by integrating ERF‐VII factor response and abscisic acid homoeostasis

Oxygen limitation (hypoxia), arising as a key stress factor due to flooding, negatively affects plant development. Consequently, maintaining root growth under such stress is crucial for plant survival, yet we know little about the root system\'s adaptions to low‐oxygen conditions and its regulation by phytohormones. In this study, we examine the impact of hypoxia and, herein, the regulatory role of group VII ETHYLENE‐RESPONSE FACTOR (ERFVII) transcription factors on root growth in Arabidopsis. We found lateral root (LR) elongation to be actively maintained by hypoxia via ERFVII factors, as erfVII seedlings possess hypersensitivity towards hypoxia regarding their LR growth. Pharmacological inhibition of abscisic acid (ABA) biosynthesis revealed ERFVII‐driven counteraction of hypoxia‐induced inhibition of LR formation in an ABA‐dependent manner. However, postemergence LR growth under hypoxia mediated by ERFVIIs was independent of ABA. In roots, ERFVIIs mediate, among others, the induction of ABA‐degrading ABA 8′‐hydroxylases CYP707A1 expression. RAP2.12 could activate the pCYC707A1:LUC reporter gene, indicating, combined with single mutant analyses, that this transcription factor regulates ABA levels through corresponding transcript upregulation. Collectively, hypoxia‐induced adaptation of the Arabidopsis root system is shaped by developmental reprogramming, whereby ERFVII‐dependent promotion of LR emergence, but not elongation, is partly executed through regulation of ABA degradation.
Printed publications

Manoilenko, S.; Dippe, M.; Fuchs, T.; Eisenschmidt-Bönn, D.; Ziegler, J.; Bauer, A.-K.; Wessjohann, L. A.; Enzymatic one-step synthesis of natural 2-pyrones and new-to-nature derivatives from coenzyme A esters

The 2-pyrone moiety is present in a wide range of structurally diverse natural products with various biological activities. The plant biosynthetic routes towards these compounds mainly depend on the activity of either type III polyketide synthase-like 2-pyrone synthases or hydroxylating 2-oxoglutarate dependent dioxygenases. In the present study, the substrate specificity of these enzymes is investigated by a systematic screening using both natural and artificial substrates with the aims of efficiently forming (new) products and understanding the underlying catalytic mechanisms. In this framework, we focused on the in vitro functional characterization of a 2-pyrone synthase Gh2PS2 from Gerbera x hybrida and two dioxygenases AtF6’H1 and AtF6’H2 from Arabidopsis thaliana using a set of twenty aromatic and aliphatic CoA esters as substrates. UHPLC-ESI-HRMSn based analyses of reaction intermediates and products revealed a broad substrate specificity of the enzymes, enabling the facile \"green\" synthesis of this important class of natural products and derivatives in a one-step/one-pot reaction in aqueous environment without the need for halogenated or metal reagents and protective groups. Using protein modelling and substrate docking we identified amino acid residues that seem to be important for the observed product scope.
Printed publications

Klčová, B.; Balarynová, J.; Trněný, O.; Krejčí, P.; Cechová, M. Z.; Leonova, T.; Gorbach, D.; Frolova, N.; Kysil, E.; Orlova, A.; Ihling, ?.; Frolov, A.; Bednář, P.; Smýkal, P.; Domestication has altered gene expression and secondary metabolites in pea seed coat

The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co‐expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall‐bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet.
Printed publications

Schreiber, T.; Prange, A.; Schäfer, P.; Iwen, T.; Grützner, R.; Marillonnet, S.; Lepage, A.; Javelle, M.; Paul, W.; Tissier, A.; Efficient scar-free knock-ins of several kilobases in plants by engineered CRISPR/Cas endonucleases

In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double strand breaks, making it challenging to generate knock-in events. We identified two groups of exonucleases from the Herpes Virus and the bacteriophage T7 families that conferred an up to 38-fold increase in HDR frequencies when fused to Cas9/Cas12a in a Tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a Herpes Virus family exonuclease leads to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrate stable and heritable knock-ins of in wheat in 1% of the primary transformants. Our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.
Printed publications

Gasperini, D.; Howe, G. A.; Phytohormones in a universe of regulatory metabolites: lessons from jasmonate

Small-molecule phytohormones exert control over plant growth, development, and stress responses by coordinating the patterns of gene expression within and between cells. Increasing evidence indicates that currently recognized plant hormones are part of a larger group of regulatory metabolites that have acquired signaling properties during the evolution of land plants. This rich assortment of chemical signals reflects the tremendous diversity of plant secondary metabolism, which offers evolutionary solutions to the daunting challenges of sessility and other unique aspects of plant biology. A major gap in our current understanding of plant regulatory metabolites is the lack of insight into the direct targets of these compounds. Here, we illustrate the blurred distinction between classical phytohormones and other bioactive metabolites by highlighting the major scientific advances that transformed the view of jasmonate from an interesting floral scent to a potent transcriptional regulator. Lessons from jasmonate research generally apply to other phytohormones and thus may help provide a broad understanding of regulatory metabolite–protein interactions. In providing a framework that links small-molecule diversity to transcriptional plasticity, we hope to stimulate future research to explore the evolution, functions, and mechanisms of perception of a broad range of plant regulatory metabolites.
Printed publications

Liu, N.; Jiang, X.; Zhong, G.; Wang, W.; Hake, K.; Matschi, S.; Lederer, S.; Hoehenwarter, W.; Sun, Q.; Lee, J.; Romeis, T.; Tang, D.; CAMTA3 repressor destabilization triggers TIR domain protein TN2-mediated autoimmunity in the Arabidopsis exo70B1 mutant

Calcium-dependent protein kinases (CPKs) can decode and translate intracellular calcium signals to induce plant immunity. Mutation of the exocyst subunit gene EXO70B1 causes autoimmunity that depends on CPK5 and the Toll/interleukin-1 receptor (TIR) domain resistance protein TIR-NBS2 (TN2), where direct interaction with TN2 stabilizes CPK5 kinase activity. However, how the CPK5–TN2 interaction initiates downstream immune responses remains unclear. Here, we show that, besides CPK5 activity, the physical interaction between CPK5 and functional TN2 triggers immune activation in exo70B1 and may represent reciprocal regulation between CPK5 and the TIR domain functions of TN2 in Arabidopsis (Arabidopsis thaliana). Moreover, we detected differential phosphorylation of the calmodulin-binding transcription activator 3 (CAMTA3) in the cpk5 background. CPK5 directly phosphorylates CAMTA3 at S964, contributing to its destabilization. The gain-of-function CAMTA3A855V variant that resists CPK5-induced degradation rescues immunity activated through CPK5 overexpression or exo70B1 mutation. Thus, CPK5-mediated immunity is executed through CAMTA3 repressor degradation via phosphorylation-induced and/or calmodulin-regulated processes. Conversely, autoimmunity in camta3 also partially requires functional CPK5. While the TIR domain activity of TN2 remains to be tested, our study uncovers a TN2–CPK5–CAMTA3 signaling module for exo70B1-mediated autoimmunity, highlighting the direct embedding of a calcium-sensing decoder element within resistance signalosomes.
Printed publications

Thirulogachandar, V.; Govind, G.; Hensel, G.; Kale, S. M.; Kuhlmann, M.; Eschen-Lippold, L.; Rutten, T.; Koppolu, R.; Rajaraman, J.; Palakolanu, S. R.; Seiler, C.; Sakuma, S.; Jayakodi, M.; Lee, J.; Kumlehn, J.; Komatsuda, T.; Schnurbusch, T.; Sreenivasulu, N.; HOMEOBOX2, the paralog of SIX-ROWED SPIKE1/HOMEOBOX1, is dispensable for barley spikelet development

The HD-ZIP class I transcription factor, HvHOX1 (Homeobox 1) or VRS1 (Vulgare Row-type Spike 1 or Six-rowed Spike 1), regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic function of HvHOX1 and HvHOX2 during spikelet development is still fragmentary. Here, we show that compared to HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of these genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.
Printed publications

Müllers, Y.; Sadr, A. S.; Schenderlein, M.; Pallab, N.; D. Davari, M.; Glebe, U.; Reifarth, M.; Acrylate‐derived RAFT polymers for enzyme hyperactivation – boosting the α‐chymotrypsin enzyme activity using tailor‐made poly(2‐carboxyethyl)acrylate (PCEA)

We study the hyperactivation of α‐chymotrypsin (α‐ChT) using the acrylate polymer poly(2‐carboxyethyl) acrylate (PCEA) in comparison to the commonly used poly(acrylic acid) (PAA). The polymers are added during the enzymatic cleavage reaction of the substrate N‐glutaryl‐L‐phenylalanine p‐nitroanilide (GPNA). Enzyme activity assays reveal a pronounced enzyme hyperactivation capacity of PCEA, which reaches up to 950% activity enhancement, and is significantly superior to PAA (revealing an activity enhancement of approx. 450%). In a combined experimental and computational study, we investigate α‐ChT/polymer interactions to elucidate the hyperactivation mechanism of the enzyme. Isothermal titration calorimetry reveals a pronounced complexation between the polymer and the enzyme. Docking simulations reveal that binding of polymers significantly improves the binding affinity of GPNA to α‐ChT. Notably, a higher binding affinity is found for the α‐ChT/PCEA compared to the α‐ChT/PAA complex. Further molecular dynamics (MD) simulations reveal changes in the size of the active site in the enzyme/polymer complexes, with PCEA inducing a more pronounced alteration compared to PAA, facilitating an easier access for the substrate to the active site of α‐ChT.
Printed publications

Frey, M.; Vahabi, K.; Cankar, K.; Lackus, N. D.; Padilla-Gonzalez, F.; Ro, D.-K.; Rieseberg, L.; Spring, O.; Tissier, A.; Sesquiterpene lactones – insights into biosynthesis, regulation and signalling roles

Sesquiterpene lactones (STLs) are bitter tasting plant specialized metabolites derived from farnesyl pyrophosphate (FPP) that contain a characteristic lactone ring. STLs can be found in many plant families that are distantly related to each other and outside the plant kingdom. They are especially prevalent in the plant families Apiaceae and Asteraceae, the latter being one of the largest plant families besides the Orchidaceae. The STL diversity is especially large in the Asteraceae, which made them an ideal object for chemosystematic studies in these species. Many STLs show a high bioactivity, for example as protective compounds against herbivory. STLs are also relevant for pharmaceutical applications, such as the treatment of malaria with artemisinin. Recent findings have dramatically changed our knowledge about the biosynthesis of STLs, as well as their developmental, spatial, and environmental regulation. This review intents to update the currently achieved progress in these aspects. With the advancement of genome editing tools such as CRISPR/Cas and the rapid acceleration of the speed of genome sequencing, even deeper insights into the biosynthesis, regulation, and enzyme evolution of STL can be expected in the future. Apart from their role as protective compounds, there may be a more subtle role of STL in regulatory processes of plants that will be discussed as well.
Publications

Zulfiqar, M.; Crusoe, M. R.; König-Ries, B.; Steinbeck, C.; Peters, K.; Gadelha, L.; Implementation of FAIR practices in computational metabolomics workflows—A case study

Scientific workflows facilitate the automation of data analysis tasks by integrating various software and tools executed in a particular order. To enable transparency and reusability in workflows, it is essential to implement the FAIR principles. Here, we describe our experiences implementing the FAIR principles for metabolomics workflows using the Metabolome Annotation Workflow (MAW) as a case study. MAW is specified using the Common Workflow Language (CWL), allowing for the subsequent execution of the workflow on different workflow engines. MAW is registered using a CWL description on WorkflowHub. During the submission process on WorkflowHub, a CWL description is used for packaging MAW using the Workflow RO-Crate profile, which includes metadata in Bioschemas. Researchers can use this narrative discussion as a guideline to commence using FAIR practices for their bioinformatics or cheminformatics workflows while incorporating necessary amendments specific to their research area.
IPB Mainnav Search