jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 10 of 289.

Printed publications

Al Shweiki, M. H. D. R., Mönchgesang, S., Majovsky, P., Thieme, D., Trutschel, D. & Hoehenwarter, W. Assessment of Label-Free quantification in discovery proteomics and impact of technological factors and natural variability of protein abundance. J Proteome Res. (2017) DOI: 10.1021/acs.jproteome.6b00645

We evaluated the state of label-free discovery proteomics focusing especially on technological contributions and contributions of naturally occurring differences in protein abundance to the intersample variability in protein abundance estimates in this highly peptide-centric technology. First, the performance of popular quantitative proteomics software, Proteome Discoverer, Scaffold, MaxQuant, and Progenesis QIP, was benchmarked using their default parameters and some modified settings. Beyond this, the intersample variability in protein abundance estimates was decomposed into variability introduced by the entire technology itself and variable protein amounts inherent to individual plants of the Arabidopsis thaliana Col-0 accession. The technical component was considerably higher than the biological intersample variability, suggesting an effect on the degree and validity of reported biological changes in protein abundance. Surprisingly, the biological variability, protein abundance estimates, and protein fold changes were recorded differently by the software used to quantify the proteins, warranting caution in the comparison of discovery proteomics results. As expected, ∼99% of the proteome was invariant in the isogenic plants in the absence of environmental factors; however, few proteins showed substantial quantitative variability. This naturally occurring variation between individual organisms can have an impact on the causality of reported protein fold changes.

Printed publications

Furlan, G., Nakagami, H., Eschen-Lippold, L., Jiang, X., Majovsky, P., Kowarschik, K., Hoehenwarter, W., Lee, J. & Trujillo, M. Changes in PUB22 ubiquitination modes triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 dampen the immune response Plant Cell (2017) DOI: 10.1105/tpc.16.00654

Crosstalk between post-translational modifications such as ubiquitination and phosphorylation play key roles in controlling the duration and intensity of signalling events to ensure cellular homeostasis. However, the molecular mechanisms underlying the regulation of negative feedback loops remain poorly understood. Here we uncover a pathway in Arabidopsis thaliana by which a negative feedback loop involving the E3 ubiquitin ligase PUB22 that dampens the immune response is triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3), best known for its function in the activation of signalling. PUB22's stability is controlled by MPK3-mediated phosphorylation of residues localized in and adjacent to the E2 docking domain. We show that phosphorylation is critical for stabilization by inhibiting PUB22 oligomerization and thus autoubiquitination. The activity switch allows PUB22 to dampen the immune response. This regulatory mechanism also suggests that autoubiquitination, which is inherent to most single unit E3s in vitro, can function as a self-regulatory mechanism in vivo. 

Ziegler, J., Schmidt, S., Chutia, R., Müller, J., Böttcher, C., Strehmel, N., Scheel, D. & Abel, S. Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation. J. Exp. Bot. 67, 1421-1432, (2016) DOI: 10.1093/jxb/erv539

Plants have evolved two major strategies to cope with phosphate (Pi) limitation. The systemic response, mainly comprising increased Pi uptake and metabolic adjustments for more efficient Pi use, and the local response, enabling plants to explore Pi-rich soil patches by reorganization of the root system architecture. Unlike previous reports, this study focused on root exudation controlled by the local response to Pi deficiency. To approach this, a hydroponic system separating the local and systemic responses was developed. Arabidopsis thaliana genotypes exhibiting distinct sensitivities to Pi deficiency could be clearly distinguished by their root exudate composition as determined by non-targeted reversed-phase ultraperformance liquid chromatography electrospray ionization quadrupole-time-of-flight mass spectrometry metabolite profiling. Compared with wild-type plants or insensitive low phosphate root 1 and 2 (lpr1 lpr2) double mutant plants, the hypersensitive phosphate deficiency response 2 (pdr2) mutant exhibited a reduced number of differential features in root exudates after Pi starvation, suggesting the involvement of PDR2-encoded P5-type ATPase in root exudation. Identification and analysis of coumarins revealed common and antagonistic regulatory pathways between Pi and Fe deficiency-induced coumarin secretion. The accumulation of oligolignols in root exudates after Pi deficiency was inversely correlated with Pi starvation-induced lignification at the root tips. The strongest oligolignol accumulation in root exudates was observed for the insensitive lpr1 lpr2 double mutant, which was accompanied by the absence of Pi deficiency-induced lignin deposition, suggesting a role of LPR ferroxidases in lignin polymerization during Pi starvation. 


Dobritzsch, M., Lübken, T., Eschen-Lippold, L., Gorzolka, K., Blum, E., Matern, A., Marillonnet, S., Böttcher, C., Dräger, B. & Rosahl, S. MATE Transporter-Dependent Export of Hydroxycinnamic Acid Amides. Plant Cell 28, 583-596, (2016) DOI: 10.1105/tpc.15.00706

The ability of Arabidopsis thaliana to successfully prevent colonization by Phytophthora infestans, the causal agent of late blight disease of potato (Solanum tuberosum), depends on multilayered defense responses. To address the role of surface-localized secondary metabolites for entry control, droplets of a P. infestans zoospore suspension, incubated on Arabidopsis leaves, were subjected to untargeted metabolite profiling. The hydroxycinnamic acid amide coumaroylagmatine was among the metabolites secreted into the inoculum. In vitro assays revealed an inhibitory activity of coumaroylagmatine on P. infestans spore germination. Mutant analyses suggested a requirement of the p-coumaroyl-CoA:agmatine N4-p-coumaroyl transferase ACT for the biosynthesis and of the MATE transporter DTX18 for the extracellular accumulation of coumaroylagmatine. The host plant potato is not able to efficiently secrete coumaroylagmatine. This inability is overcome in transgenic potato plants expressing the two Arabidopsis genes ACT and DTX18. These plants secrete agmatine and putrescine conjugates to high levels, indicating that DTX18 is a hydroxycinnamic acid amide transporter with a distinct specificity. The export of hydroxycinnamic acid amides correlates with a decreased ability of P. infestans spores to germinate, suggesting a contribution of secreted antimicrobial compounds to pathogen defense at the leaf surface.


Treutler, H., Tsugawa, H., Porzel, A., Gorzolka, K., Tissier, A., Neumann, S. & Balcke, G. U. Discovering regulated metabolite families in untargeted metabolomics studies. Anal Chem 88, 8082-8090, (2016) DOI: 10.1021/acs.analchem.6b01569

The identification of metabolites by mass spectrometry constitutes a major bottleneck which considerably limits the throughput of metabolomics studies in biomedical or plant research. Here, we present a novel approach to analyze metabolomics data from untargeted, data-independent LC-MS/MS measurements. By integrated analysis of MS1 abundances and MS/MS spectra, the identification of regulated metabolite families is achieved. This approach offers a global view on metabolic regulation in comparative metabolomics. We implemented our approach in the web application “MetFamily”, which is freely available at http://msbi.ipb-halle.de/MetFamily/. MetFamily provides a dynamic link between the patterns based on MS1-signal intensity and the corresponding structural similarity at the MS/MS level. Structurally related metabolites are annotated as metabolite families based on a hierarchical cluster analysis of measured MS/MS spectra. Joint examination with principal component analysis of MS1 patterns, where this annotation 

Books and chapters

Schober, D., Salek R. M. & Neumann, S. Towards standardized evidence descriptors for metabolite annotations.. In: IN: Proceedings of the 7th Workshop on Ontologies and Data in Life Sciences, organized by the GI Workgroup Ontologies in Biomedicine and Life Sciences (OBML), Halle (Saale), Germany, September 29-30, 2016.  (Loebe, F.; Boeker, M.; Herre, H.; Jansen, L.; Schober, ). CEUR Workshop Proceedings 1692, E 5, (2016)

Motivation: Data on measured abundances of small molecules from biomaterial is currently accumulating in the literature and in online repositories. Unless formal machine-readable evidence assertions for such metabolite identifications are provided, quality assessment based re-use will be sparse. Existing annotation schemes are not universally adopted, nor granular enough to be of practical use in evidence-based quality assessment. Results: We review existing evidence schemes for metabolite identifications of variant semantic expressivity and derive requirements for a 'compliance-optimized' yet traceable annotation model. We present a pattern-based, yet simple taxonomy of intuitive and self-explaining descriptors that allow to annotate metab-olomics assay results both in literature and data bases with evidence information on small molecule analytics gained via technologies such as mass spectrometry or NMR. We present example annotations for typical mass spectrometry molecule assignments and outline next steps for integration with existing ontologies and metabolomics data exchange formats. Availability: An initial draft and documentation of the metabolite identification evidence code ontology is available at


Wohlgemuth, G., Mehta, S. S., Mejia, R. F., Neumann, S., Pedrosa, D., Pluskal, T., Schymanski, E. L., Willighagen, E. L., Wilson, M., Wishart, D. S., Arita, M., Dorrestein, P. C., Bandeira, N., Wang, M., Schulze, T., , Salek, R. M., Steinbeck, C., Nainala, V. C., Mistrik, R., Nishioka, T. & Fiehn, O. SPLASH, a hashed identifier for mass spectra. Nat Biotech 34, 1099-1101, (2016) DOI: 10.1038/nbt.3689


Treutler, H. & Neumann, S. Prediction, detection, and validation of isotope clusters in mass spectrometry data. Metabolites 6, (2016) DOI: 10.3390/metabo6040037

Mass spectrometry is a key analytical platform for metabolomics. The precise quantification and identification of small molecules is a prerequisite for elucidating the metabolism and the detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task. Here, we present an approach for the improved detection of isotope clusters using chemical prior knowledge and the validation of detected isotope clusters depending on the substance mass using database statistics. We find remarkable improvements regarding the number of detected isotope clusters and are able to predict the correct molecular formula in the top three ranks in 92% of the cases. We make our methodology freely available as part of the Bioconductor packages xcms version 1.50.0 and CAMERA version 1.30.0.

Printed publications

Küster, N., Rosahl, S. & Dräger, B. Potato plants with genetically engineered tropane alkaloid precursors Planta 245 , 355-365, (2016) DOI: 10.1007/s00425-016-2610-7

Solanum tuberosumtropinone reductase I reduced tropinone in vivo. Suppression of tropinone reductase II strongly reduced calystegines in sprouts. Overexpression of putrescineN-methyltransferase did not alter calystegine accumulation.

Calystegines are hydroxylated alkaloids formed by the tropane alkaloid pathway. They accumulate in potato (Solanum tuberosum L., Solanaceae) roots and sprouting tubers. Calystegines inhibit various glycosidases in vitro due to their sugar-mimic structure, but functions of calystegines in plants are not understood. Enzymes participating in or competing with calystegine biosynthesis, including putrescine N-methyltransferase (PMT) and tropinone reductases (TRI and TRII), were altered in their activity in potato plants by RNA interference (RNAi) and by overexpression. The genetically altered potato plants were investigated for the accumulation of calystegines and for intermediates of their biosynthesis. An increase in N-methylputrescine provided by DsPMT expression was not sufficient to increase calystegine accumulation. Overexpression and gene knockdown of StTRI proved that S. tuberosum TRI is a functional tropinone reductase in vivo, but no influence on calystegine accumulation was observed. When StTRII expression was suppressed by RNAi, calystegine formation was severely compromised in the transformed plants. Under phytochamber and green house conditions, the StTRII RNAi plants did not show phenotypic alterations. Further investigation of calystegines function in potato plants under natural conditions is enabled by the calystegine deprived StTRII RNAi plants.

Books and chapters

Faden, F., Eschen-Lippold, L. & Dissmeyer, N. Normalized Quantitative Western Blotting Based on Standardized Fluorescent Labeling. In: Plant Proteostasis Meth. Mol. Biol 1450, 247-258, (2016) ISBN: 978-1-4939-3757-8 DOI: 10.1007/978-1-4939-3759-2_20

Western blot (WB) analysis is the most widely used method to monitor expression of proteins of interest in protein extracts of high complexity derived from diverse experimental setups. WB allows the rapid and specific detection of a target protein, such as non-tagged endogenous proteins as well as protein–epitope tag fusions depending on the availability of specific antibodies. To generate quantitative data from independent samples within one experiment and to allow accurate inter-experimental quantification, a reliable and reproducible method to standardize and normalize WB data is indispensable. To date, it is a standard procedure to normalize individual bands of immunodetected proteins of interest from a WB lane to other individual bands of so-called housekeeping proteins of the same sample lane. These are usually detected by an independent antibody or colorimetric detection and do not reflect the real total protein of a sample. Housekeeping proteins—assumed to be constitutively expressed mostly independent of developmental and environmental states—can greatly differ in their expression under these various conditions. Therefore, they actually do not represent a reliable reference to normalize the target protein’s abundance to the total amount of protein contained in each lane of a blot.

Here, we demonstrate the Smart Protein Layers (SPL) technology, a combination of fluorescent standards and a stain-free fluorescence-based visualization of total protein in gels and after transfer via WB. SPL allows a rapid and highly sensitive protein visualization and quantification with a sensitivity comparable to conventional silver staining with a 1000-fold higher dynamic range. For normalization, standardization and quantification of protein gels and WBs, a sample-dependent bi-fluorescent standard reagent is applied and, for accurate quantification of data derived from different experiments, a second calibration standard is used. Together, the precise quantification of protein expression by lane-to-lane, gel-to-gel, and blot-to-blot comparisons is facilitated especially with respect to experiments in the area of proteostasis dealing with highly variable protein levels and involving protein degradation mutants and treatments modulating protein abundance.

IPB Mainnav Search