jump to searchjump to navigationjump to content

Sort by: Year Type of publication

Displaying results 1 to 10 of 48.

Publications

Schreiber, T.; Prange, A.; Schäfer, P.; Iwen, T.; Grützner, R.; Marillonnet, S.; Lepage, A.; Javelle, M.; Paul, W.; Tissier, A.; Efficient scar-free knock-ins of several kilobases in plants by engineered CRISPR/Cas endonucleases Mol. Plant 17, 824-837, (2024) DOI: 10.1016/j.molp.2024.03.013

In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double strand breaks, making it challenging to generate knock-in events. We identified two groups of exonucleases from the Herpes Virus and the bacteriophage T7 families that conferred an up to 38-fold increase in HDR frequencies when fused to Cas9/Cas12a in a Tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a Herpes Virus family exonuclease leads to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrate stable and heritable knock-ins of in wheat in 1% of the primary transformants. Our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.
Publications

Grützner, R.; König, K.; Horn, C.; Engler, C.; Laub, A.; Vogt, T.; Marillonnet, S.; A transient expression tool box for anthocyanin biosynthesis in Nicotiana benthamiana Plant Biotechnol. J. 22, 1238-1250, (2024) DOI: 10.1111/pbi.14261

Transient expression in Nicotiana benthamiana offers a robust platform for the rapid production of complex secondary metabolites. It has proven highly effective in helping identify genes associated with pathways responsible for synthesizing various valuable natural compounds. While this approach has seen considerable success, it has yet to be applied to uncovering genes involved in anthocyanin biosynthetic pathways. This is because only a single anthocyanin, delphinidin 3‐O‐rutinoside, can be produced in N. benthamiana by activation of anthocyanin biosynthesis using transcription factors. The production of other anthocyanins would necessitate the suppression of certain endogenous flavonoid biosynthesis genes while transiently expressing others. In this work, we present a series of tools for the reconstitution of anthocyanin biosynthetic pathways in N. benthamiana leaves. These tools include constructs for the expression or silencing of anthocyanin biosynthetic genes and a mutant N. benthamiana line generated using CRISPR. By infiltration of defined sets of constructs, the basic anthocyanins pelargonidin 3‐O‐glucoside, cyanidin 3‐O‐glucoside and delphinidin 3‐O‐glucoside could be obtained in high amounts in a few days. Additionally, co‐infiltration of supplementary pathway genes enabled the synthesis of more complex anthocyanins. These tools should be useful to identify genes involved in the biosynthesis of complex anthocyanins. They also make it possible to produce novel anthocyanins not found in nature. As an example, we reconstituted the pathway for biosynthesis of Arabidopsis anthocyanin A5, a cyanidin derivative and achieved the biosynthesis of the pelargonidin and delphinidin variants of A5, pelargonidin A5 and delphinidin A5.
Publications

Nietzschmann, L.; Smolka, U.; Perino, E. H. B.; Gorzolka, K.; Stamm, G.; Marillonnet, S.; Bürstenbinder, K.; Rosahl, S.; The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato Sci. Rep. 13, 20534, (2023) DOI: 10.1038/s41598-023-47648-x

Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Preprints

Schreiber, T.; Tripathee, S.; Iwen, T.; Prange, A.; Vahabi, K.; Grützner, R.; Horn, C.; Marillonnet, S.; Tissier, A.; DNA double strand breaks lead to de novo transcription and translation of damage-induced long RNAs in planta bioRxiv (2022) DOI: 10.1101/2022.05.11.491484

DNA double strand breaks (DSBs) are lethal threats that need to be repaired. Although many of the proteins involved in the early steps of DSB repair have been characterized, recent reports indicate that damage induced long and small RNAs also play an important role in DSB repair. Here, using a Nicotiana benthamiana transgenic line originally designed as a reporter for targeted knock-ins, we show that DSBs generated by Cas9 induce the transcription of long stable RNAs (damage-induced long RNAs - dilRNAs) that are translated into proteins. Using an array of single guide RNAs we show that the initiation of transcription takes place in the vicinity of the DSB. Single strand DNA nicks are not able to induce transcription, showing that cis DNA damage-induced transcription is specific for DSBs. Our results support a model in which a default and early event in the processing of DSBs is transcription into RNA which, depending on the genomic and genic context, can undergo distinct fates, including translation into protein, degradation or production of small RNAs. Our results have general implications for understanding the role of transcription in the repair of DSBs and, reciprocally, reveal DSBs as yet another way to regulate gene expression.
Publications

Stellmach, H.; Hose, R.; Räde, A.; Marillonnet, S.; Hause, B.; A new set of Golden-Gate-Based organelle marker plasmids for colocalization studies in plants Plants 11, 2620, (2022) DOI: 10.3390/plants11192620

In vivo localization of proteins using fluorescence-based approaches by fusion of the protein of interest (POI) to a fluorescent protein is a cost- and time-effective tool to gain insights into its physiological function in a plant cell. Determining the proper localization, however, requires the co-expression of defined organelle markers (OM). Several marker sets are available but, so far, the procedure requires successful co-transformation of POI and OM into the same cell and/or several cloning steps. We developed a set of vectors containing markers for basic cell organelles that enables the insertion of the gene of interest (GOI) by a single cloning step using the Golden Gate cloning approach and resulting in POI–GFP fusions. The set includes markers for plasma membrane, tonoplast, nucleus, endoplasmic reticulum, Golgi apparatus, peroxisomes, plastids, and mitochondria, all labelled with mCherry. Most of them were derived from well-established marker sets, but those localized in plasma membrane and tonoplast were improved by using different proteins. The final vectors are usable for localization studies in isolated protoplasts and for transient transformation of leaves of Nicotiana benthamiana. Their functionality is demonstrated using two enzymes involved in biosynthesis of jasmonic acid and located in either plastids or peroxisomes.
Publications

Yang, C.; Marillonnet, S.; Tissier, A.; The scarecrow-like transcription factor SlSCL3 regulates volatile terpene biosynthesis and glandular trichome size in tomato (Solanum lycopersicum) Plant J. 107, 1102-1118, (2021) DOI: 10.1111/tpj.15371

Tomato (Solanum lycopersicum L.) type VI glandular trichomes that occur on the surface of leaves, stems, young fruits and flowers produce and store a blend of volatile monoterpenes and sesquiterpenes. These compounds play important roles in the interaction with pathogens and herbivorous insects. Although the function of terpene synthases in the biosynthesis of volatile terpenes in tomato has been comprehensively investigated, the deciphering of their transcriptional regulation is only just emerging. We selected transcription factors that are over-expressed in trichomes based on existing transcriptome data and silenced them individually by virus-induced gene silencing. Of these, SlSCL3, a scarecrow-like (SCL) subfamily transcription factor, led to a significant decrease in volatile terpene content and expression of the corresponding terpene synthase genes when its transcription level was downregulated. Overexpression of SlSCL3 dramatically increased both the volatile terpene content and glandular trichome size, whereas its homozygous mutants showed reduced terpene biosynthesis. However, its heterozygous mutants also showed a significantly elevated volatile terpene content and enlarged glandular trichomes, similar to the overexpression plants. SlSCL3 modulates the expression of terpene biosynthetic pathway genes by transcriptional activation, but neither direct protein–DNA binding nor interaction with known regulators was observed. Moreover, transcript levels of the endogenous copy of SlSCL3 were decreased in the overexpression plants but increased in the heterozygous and homozygous mutants, suggesting feedback repression of its own promoter. Taken together, our results provide new insights into the role of SlSCL3 in the complex regulation of volatile terpene biosynthesis and glandular trichome development in tomato.
Publications

Stuttmann, J.; Barthel, K.; Martin, P.; Ordon, J.; Erickson, J. L.; Herr, R.; Ferik, F.; Kretschmer, C.; Berner, T.; Keilwagen, J.; Marillonnet, S.; Bonas, U.; Highly efficient multiplex editing: one‐shot generation of 8× Nicotiana benthamiana and 12× Arabidopsis mutants Plant J. 106, 8-22, (2021) DOI: 10.1111/tpj.15197

Genome editing by RNA-guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron-optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene-free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T1 and T2, respectively). We developed novel counter-selection markers for N. benthamiana, most importantly Sl-FAST2, comparable to the well-established Arabidopsis seed fluorescence marker, and FCY-UPP, based on the production of toxic 5-fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY-UPP for selection of non-transgenic T1, we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher-order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes.
Publications

Sheikh, A. H.; Fraz Hussain, R. M.; Tabassum, N.; Badmi, R.; Marillonnet, S.; Scheel, D.; Lee, J.; Sinha, A.; Possible role of WRKY transcription factors in regulating immunity in Oryza sativa ssp. indica Physiol. Mol. Plant Pathol. 114, 101623, (2021) DOI: 10.1016/j.pmpp.2021.101623

Plants have developed a robust transcription machinery to combat potential pathogenic organisms. One of the hallmarks of early immune responses is the activation of the WRKY transcription factors post infection. Specific WRKYs proteins from Arabidopsis are known substrates of MAPK pathway to mediate the flg22 elicited early immunity. In the current study, using the Golden Gate cloning strategy, we aim to clone the entire WRKY transcription factor family from Oryza sativa ssp. indica consisting of more than 100 members and study their MAPK interaction and subsequent role in PTI. Using a reporter LUC assay in protoplasts we investigated the early defense responses in a few interesting OsWRKY candidates. Interestingly, we observed stringent regulation of WRKY expression in cells and their transcriptional expression only under specific stress responses. The phenomenon of gene expression regulation by intron retention (IR) was prevalently observed in rice WRKY transcripts. We could show the role of WRKY8, 24, and 77 in early defense responses. It was observed that WRKY24 enhanced the expression of early defense response marker genes like NHL10 while WRKY8 and WRKY77 supressed their expression. This study highlights the complicated mechanism by which OsWRKYs expression is possibly regulated and the distinctive roles of some individual members in plant immunity. At the same time this study serves as a cautionary warning for plant researchers to be mindful of the intron retention mechanism while cloning OsWRKYs.
Publications

Püllmann, P.; Knorrscheidt, A.; Münch, J.; Palme, P. R.; Hoehenwarter, W.; Marillonnet, S.; Alcalde, M.; Westermann, B.; Weissenborn, M. J.; A modular two yeast species secretion system for the production and preparative application of unspecific peroxygenases Commun. Biol. 4, 562, (2021) DOI: 10.1038/s42003-021-02076-3

AbstractFungal unspecific peroxygenases (UPOs) represent an enzyme class catalysing versatile oxyfunctionalisation reactions on a broad substrate scope. They are occurring as secreted, glycosylated proteins bearing a haem-thiolate active site and rely on hydrogen peroxide as the oxygen source. However, their heterologous production in a fast-growing organism suitable for high throughput screening has only succeeded once—enabled by an intensive directed evolution campaign. We developed and applied a modular Golden Gate-based secretion system, allowing the first production of four active UPOs in yeast, their one-step purification and application in an enantioselective conversion on a preparative scale. The Golden Gate setup was designed to be universally applicable and consists of the three module types: i) signal peptides for secretion, ii) UPO genes, and iii) protein tags for purification and split-GFP detection. The modular episomal system is suitable for use in Saccharomyces cerevisiae and was transferred to episomal and chromosomally integrated expression cassettes in Pichia pastoris. Shake flask productions in Pichia pastoris yielded up to 24 mg/L secreted UPO enzyme, which was employed for the preparative scale conversion of a phenethylamine derivative reaching 98.6 % ee. Our results demonstrate a rapid, modular yeast secretion workflow of UPOs yielding preparative scale enantioselective biotransformations.
Publications

Grützner, R.; Martin, P.; Horn, C.; Mortensen, S.; Cram, E. J.; Lee-Parsons, C. W.; Stuttmann, J.; Marillonnet, S.; High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns Plant Communications 2, 100135, (2021) DOI: 10.1016/j.xplc.2020.100135

The recent discovery of the mode of action of the CRISPR/Cas9 system has provided biologists with a useful tool for generating site-specific mutations in genes of interest. In plants, site-targeted mutations are usually obtained by the stable transformation of a Cas9 expression construct into the plant genome. The efficiency of introducing mutations in genes of interest can vary considerably depending on the specific features of the constructs, including the source and nature of the promoters and terminators used for the expression of the Cas9 gene and the guide RNA, and the sequence of the Cas9 nuclease itself. To optimize the efficiency of the Cas9 nuclease in generating mutations in target genes in Arabidopsis thaliana, we investigated several features of its nucleotide and/or amino acid sequence, including the codon usage, the number of nuclear localization signals (NLSs), and the presence or absence of introns. We found that the Cas9 gene codon usage had some effect on its activity and that two NLSs worked better than one. However, the highest efficiency of the constructs was achieved by the addition of 13 introns into the Cas9 coding sequence, which dramatically improved the editing efficiency of the constructs. None of the primary transformants obtained with a Cas9 gene lacking introns displayed a knockout mutant phenotype, whereas between 70% and 100% of the primary transformants generated with the intronized Cas9 gene displayed mutant phenotypes. The intronized Cas9 gene was also found to be effective in other plants such as Nicotiana benthamiana and Catharanthus roseus.
IPB Mainnav Search