jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 1 to 10 of 18.

Publications

Fellenberg, C.; Ziegler, J.; Handrick, V.; Vogt, T.; Polyamine homeostasis in wild type and phenolamide deficient Arabidopsis thaliana stamens Front. Plant Sci. 3, 180, (2012) DOI: 10.3389/fpls.2012.00180

Polyamines (PAs) like putrescine, spermidine, and spermine are ubiquitous polycationic molecules that occur in all living cells and have a role in a wide variety of biological processes. High amounts of spermidine conjugated to hydroxycinnamic acids are detected in the tryphine of Arabidopsis thaliana pollen grains. Tapetum localized spermidine hydroxycinnamic acid transferase (SHT) is essential for the biosynthesis of these anther specific tris-conjugated spermidine derivatives. Sht knockout lines show a strong reduction of hydroxycinnamic acid amides (HCAAs). The effect of HCAA-deficient anthers on the level of free PAs was measured by a new sensitive and reproducible method using 9-fluorenylmethyl chloroformate (FMOC) and fluorescence detection by HPLC. PA concentrations can be accurately determined even when very limited amounts of plant material, as in the case of A. thaliana stamens, are available. Analysis of free PAs in wild type stamens compared to sht deficient mutants and transcript levels of key PA biosynthetic genes revealed a highly controlled regulation of PA homeostasis in A. thaliana anthers.
Publications

Bleeker, P. M.; Mirabella, R.; Diergaarde, P. J.; VanDoorn, A.; Tissier, A.; Kant, M. R.; Prins, M.; de Vos, M.; Haring, M. A.; Schuurink, R. C.; Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative Proc. Natl. Acad. Sci. U.S.A. 109, 20124-20129, (2012) DOI: 10.1073/pnas.1208756109

Tomato breeding has been tremendously efficient in increasing fruit quality and quantity but did not focus on improving herbivore resistance. The biosynthetic pathway for the production of 7-epizingiberene in a wild tomato was introduced into a cultivated greenhouse variety with the aim to obtain herbivore resistance. 7-Epizingiberene is a specific sesquiterpene with toxic and repellent properties that is produced and stored in glandular trichomes. We identified 7-epizingiberene synthase (ShZIS) that belongs to a new class of sesquiterpene synthases, exclusively using Z-Z-farnesyl-diphosphate (zFPP) in plastids, probably arisen through neo-functionalization of a common ancestor. Expression of the ShZIS and zFPP synthases in the glandular trichomes of cultivated tomato resulted in the production of 7-epizingiberene. These tomatoes gained resistance to several herbivores that are pests of tomato. Hence, introduction of this sesquiterpene biosynthetic pathway into cultivated tomatoes resulted in improved herbivore resistance.
Publications

Bektas, I.; Fellenberg, C.; Paulsen, H.; Water-soluble chlorophyll protein (WSCP) of Arabidopsis is expressed in the gynoecium and developing silique Planta 236, 251-259, (2012) DOI: 10.1007/s00425-012-1609-y

Water-soluble chlorophyll protein (WSCP) has been found in many Brassicaceae, most often in leaves. In many cases, its expression is stress-induced, therefore, it is thought to be involved in some stress response. In this work, recombinant WSCP from Arabidopsis thaliana (AtWSCP) is found to form chlorophyll-protein complexes in vitro that share many properties with recombinant or native WSCP from Brassica oleracea, BoWSCP, including an unusual heat resistance up to 100°C in aqueous solution. A polyclonal antibody raised against the recombinant apoprotein is used to identify plant tissues expressing AtWSCP. The only plant organs containing significant amounts of AtWSCP are the gynoecium in open flowers and the septum of developing siliques, specifically the transmission tract. In fully grown but still green siliques, the protein has almost disappeared. Possible implications for AtWSCP functions are discussed.
Publications

Balcke, G. U.; Handrick, V.; Bergau, N.; Fichtner, M.; Henning, A.; Stellmach, H.; Tissier, A.; Hause, B.; Frolov, A.; An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues Plant Meth. 8, 47, (2012) DOI: 10.1186/1746-4811-8-47

BackgroundPhytohormones are the key metabolites participating in the regulation of multiple functions of plant organism. Among them, jasmonates, as well as abscisic and salicylic acids are responsible for triggering and modulating plant reactions targeted against pathogens and herbivores, as well as resistance to abiotic stress (drought, UV-irradiation and mechanical wounding). These factors induce dramatic changes in phytohormone biosynthesis and transport leading to rapid local and systemic stress responses. Understanding of underlying mechanisms is of principle interest for scientists working in various areas of plant biology. However, highly sensitive, precise and high-throughput methods for quantification of these phytohormones in small samples of plant tissues are still missing.ResultsHere we present an LC-MS/MS method for fast and highly sensitive determination of jasmonates, abscisic and salicylic acids. A single-step sample preparation procedure based on mixed-mode solid phase extraction was efficiently combined with essential improvements in mobile phase composition yielding higher efficiency of chromatographic separation and MS-sensitivity. This strategy resulted in dramatic increase in overall sensitivity, allowing successful determination of phytohormones in small (less than 50 mg of fresh weight) tissue samples. The method was completely validated in terms of analyte recovery, sensitivity, linearity and precision. Additionally, it was cross-validated with a well-established GC-MS-based procedure and its applicability to a variety of plant species and organs was verified.ConclusionThe method can be applied for the analyses of target phytohormones in small tissue samples obtained from any plant species and/or plant part relying on any commercially available (even less sensitive) tandem mass spectrometry instrumentation.
Publications

Landgraf, R.; Schaarschmidt, S.; Hause, B.; Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms Plant Cell Environ. 35, 1344-1357, (2012) DOI: 10.1111/j.1365-3040.2012.02495.x

In nature, plants are subject to various stresses that are often accompanied by wounding of the aboveground tissues. As wounding affects plants locally and systemically, we investigated the impact of leaf wounding on interactions of Medicago truncatula with root‐colonizing microorganisms, such as the arbuscular mycorrhizal (AM) fungus Glomus intraradices, the pathogenic oomycete Aphanomyces euteiches and the nitrogen‐fixing bacterium Sinorhizobium meliloti. To obtain a long‐lasting wound response, repeated wounding was performed and resulted in locally and systemically increased jasmonic acid (JA) levels accompanied by the expression of jasmonate‐induced genes, among them the genes encoding allene oxide cyclase 1 (MtAOC1) and a putative cell wall‐bound invertase (cwINV). After repeated wounding, colonization with the AM fungus was increased, suggesting a role of jasmonates as positive regulators of mycorrhization, whereas the interaction with the rhizobacterium was not affected. In contrast, wounded plants appeared to be less susceptible to pathogens which might be caused by JA‐induced defence mechanisms. The effects of wounding on mycorrhization and pathogen infection could be partially mimicked by foliar application of JA. In addition to JA itself, the positive effect on mycorrhization might be mediated by systemically induced cwINV, which was previously shown to exhibit a regulatory function on interaction with AM fungi.
Publications

Goetz, S.; Hellwege, A.; Stenzel, I.; Kutter, C.; Hauptmann, V.; Forner, S.; McCaig, B.; Hause, G.; Miersch, O.; Wasternack, C.; Hause, B.; Role of cis-12-Oxo-Phytodienoic Acid in Tomato Embryo Development Plant Physiol. 158, 1715-1727, (2012) DOI: 10.1104/pp.111.192658

Oxylipins including jasmonates are signaling compounds in plant growth, development, and responses to biotic and abiotic stresses. In Arabidopsis (Arabidopsis thaliana) most mutants affected in jasmonic acid (JA) biosynthesis and signaling are male sterile, whereas the JA-insensitive tomato (Solanum lycopersicum) mutant jai1 is female sterile. The diminished seed formation in jai1 together with the ovule-specific accumulation of the JA biosynthesis enzyme allene oxide cyclase (AOC), which correlates with elevated levels of JAs, suggest a role of oxylipins in tomato flower/seed development. Here, we show that 35S::SlAOC-RNAi lines with strongly reduced AOC in ovules exhibited reduced seed set similarly to the jai1 plants. Investigation of embryo development of wild-type tomato plants showed preferential occurrence of AOC promoter activity and AOC protein accumulation in the developing seed coat and the embryo, whereas 12-oxo-phytodienoic acid (OPDA) was the dominant oxylipin occurring nearly exclusively in the seed coat tissues. The OPDA- and JA-deficient mutant spr2 was delayed in embryo development and showed an increased programmed cell death in the developing seed coat and endosperm. In contrast, the mutant acx1a, which accumulates preferentially OPDA and residual amount of JA, developed embryos similar to the wild type, suggesting a role of OPDA in embryo development. Activity of the residual amount of JA in the acx1a mutant is highly improbable since the known reproductive phenotype of the JA-insensitive mutant jai1 could be rescued by wound-induced formation of OPDA. These data suggest a role of OPDA or an OPDA-related compound for proper embryo development possibly by regulating carbohydrate supply and detoxification.
Publications

Gaupels, F.; Sarioglu, H.; Beckmann, M.; Hause, B.; Spannagl, M.; Draper, J.; Lindermayr, C.; Durner, J.; Deciphering Systemic Wound Responses of the Pumpkin Extrafascicular Phloem by Metabolomics and Stable Isotope-Coded Protein Labeling Plant Physiol. 160, 2285-2299, (2012) DOI: 10.1104/pp.112.205336

In cucurbits, phloem latex exudes from cut sieve tubes of the extrafascicular phloem (EFP), serving in defense against herbivores. We analyzed inducible defense mechanisms in the EFP of pumpkin (Cucurbita maxima) after leaf damage. As an early systemic response, wounding elicited transient accumulation of jasmonates and a decrease in exudation probably due to partial sieve tube occlusion by callose. The energy status of the EFP was enhanced as indicated by increased levels of ATP, phosphate, and intermediates of the citric acid cycle. Gas chromatography coupled to mass spectrometry also revealed that sucrose transport, gluconeogenesis/glycolysis, and amino acid metabolism were up-regulated after wounding. Combining ProteoMiner technology for the enrichment of low-abundance proteins with stable isotope-coded protein labeling, we identified 51 wound-regulated phloem proteins. Two Sucrose-Nonfermenting1-related protein kinases and a 32-kD 14-3-3 protein are candidate central regulators of stress metabolism in the EFP. Other proteins, such as the Silverleaf Whitefly-Induced Protein1, Mitogen Activated Protein Kinase6, and Heat Shock Protein81, have known defensive functions. Isotope-coded protein labeling and western-blot analyses indicated that Cyclophilin18 is a reliable marker for stress responses of the EFP. As a hint toward the induction of redox signaling, we have observed delayed oxidation-triggered polymerization of the major Phloem Protein1 (PP1) and PP2, which correlated with a decline in carbonylation of PP2. In sum, wounding triggered transient sieve tube occlusion, enhanced energy metabolism, and accumulation of defense-related proteins in the pumpkin EFP. The systemic wound response was mediated by jasmonate and redox signaling.
Publications

Fellenberg, C.; van Ohlen, M.; Handrick, V.; Vogt, T.; The role of CCoAOMT1 and COMT1 in Arabidopsis anthers Planta 236, 51-61, (2012) DOI: 10.1007/s00425-011-1586-6

Arabidopsis caffeoyl coenzyme A dependent O-methyltransferase 1 (CCoAOMT1) and caffeic acid O-methyltransferase 1 (COMT1) display a similar substrate profile although with distinct substrate preferences and are considered the key methyltransferases (OMTs) in the biosynthesis of lignin monomers, coniferyl and sinapoylalcohol. Whereas CCoAOMT1 displays a strong preference for caffeoyl coenzyme A, COMT1 preferentially methylates 5-hydroxyferuloyl CoA derivatives and also performs methylation of flavonols with vicinal aromatic dihydroxy groups, such as quercetin. Based on different knockout lines, phenolic profiling, and immunohistochemistry, we present evidence that both enzymes fulfil distinct, yet different tasks in Arabidopsis anthers. CCoAOMT1 besides its role in vascular tissues can be localized to the tapetum of young stamens, contributing to the biosynthesis of spermidine phenylpropanoid conjugates. COMT1, although present in the same organ, is not localized in the tapetum, but in two directly adjacent cells layers, the endothecium and the epidermal layer of stamens. In vivo localization and phenolic profiling of comt1 plants provide evidence that COMT1 neither contributes to the accumulation of spermidine phenylpropanoid conjugates nor to the flavonol glycoside pattern of pollen grains.
Publications

Wessjohann, L.; Vogt, T.; Kufka, J.; Klein, R.; Prenyl- und Methyltransferasen in Natur und Synthese BIOspektrum 18, 22-25, (2012) DOI: 10.1007/s12268-012-0137-4

Late stage enzymatic prenylation and methylation are means to diversify (natural) compounds and to specify their functions. In eukaryotes and microbes, these steps are performed by large enzyme families, the prenyl and methyl transferases, which modify various types of small molecules, like isoprenoids, phenolics or alkaloids, but also DNA and proteins. We investigate the theoretical basis of these processes and possible commercial applications in synthetic chemistry.
Publications

Werner, S.; Engler, C.; Weber, E.; Gruetzner, R.; Marillonnet, S.; Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system Bioengineered 3, 38-43, (2012) DOI: 10.4161/bbug.3.1.18223

Recent progress in the field of synthetic biology has led to the creation of cells containing synthetic genomes. Although these first synthetic organisms contained copies of natural genomes, future work will be directed toward engineering of organisms with modified genomes and novel phenotypes. Much work, however, remains to be done to be able to routinely engineer novel biological functions. As a tool that will be useful for such purpose, we have recently developed a modular cloning system (MoClo) that allows high throughput assembly of multiple genetic elements. We present here new features of this cloning system that allow to increase the speed of assembly of multigene constructs. As an example, 68 DNA fragments encoding basic genetic elements were assembled using three one-pot cloning steps, resulting in a 50 kb construct containing 17 eukaryotic transcription units. This cloning system should be useful for generating the multiple construct variants that will be required for developing gene networks encoding novel functions, and fine-tuning the expression levels of the various genes involved.
IPB Mainnav Search