jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 1 to 10 of 16.

Publications

Ziegler, J.; Voigtländer, S.; Schmidt, J.; Kramell, R.; Miersch, O.; Ammer, C.; Gesell, A.; Kutchan, T. M.; Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis Plant J. 48, 177-192, (2006) DOI: 10.1111/j.1365-313X.2006.02860.x

Plants of the order Ranunculales, especially members of the species Papaver , accumulate a large variety of benzylisoquinoline alkaloids with about 2500 structures, but only the opium poppy (Papaver somniferum ) and Papaver setigerum are able to produce the analgesic and narcotic morphine and the antitussive codeine. In this study, we investigated the molecular basis for this exceptional biosynthetic capability by comparison of alkaloid profiles with gene expression profiles between 16 different Papaver species. Out of 2000 expressed sequence tags obtained from P. somniferum , 69 show increased expression in morphinan alkaloid‐containing species. One of these cDNAs, exhibiting an expression pattern very similar to previously isolated cDNAs coding for enzymes in benzylisoquinoline biosynthesis, showed the highest amino acid identity to reductases in menthol biosynthesis. After overexpression, the protein encoded by this cDNA reduced the keto group of salutaridine yielding salutaridinol, an intermediate in morphine biosynthesis. The stereoisomer 7‐epi ‐salutaridinol was not formed. Based on its similarities to a previously purified protein from P. somniferum with respect to the high substrate specificity, molecular mass and kinetic data, the recombinant protein was identified as salutaridine reductase (SalR; EC 1.1.1.248). Unlike codeinone reductase, an enzyme acting later in the pathway that catalyses the reduction of a keto group and which belongs to the family of the aldo‐keto reductases, the cDNA identified in this study as SalR belongs to the family of short chain dehydrogenases/reductases and is related to reductases in monoterpene metabolism.
Publications

Wasternack, C.; Stenzel, I.; Hause, B.; Hause, G.; Kutter, C.; Maucher, H.; Neumerkel, J.; Feussner, I.; Miersch, O.; The wound response in tomato – Role of jasmonic acid J. Plant Physiol. 163, 297-306, (2006) DOI: 10.1016/j.jplph.2005.10.014

Plants respond to mechanical wounding or herbivore attack with a complex scenario of sequential, antagonistic or synergistic action of different signals leading to defense gene expression. Tomato plants were used as a model system since the peptide systemin and the lipid-derived jasmonic acid (JA) were recognized as essential signals in wound-induced gene expression. In this review recent data are discussed with emphasis on wound-signaling in tomato. The following aspects are covered: (i) systemin signaling, (ii) JA biosynthesis and action, (iii) orchestration of various signals such as JA, H2O2, NO, and salicylate, (iv) local and systemic response, and (v) amplification in wound signaling. The common occurrence of JA biosynthesis and systemin generation in the vascular bundles suggest JA as the systemic signal. Grafting experiments with JA-deficient, JA-insensitive and systemin-insensitive mutants strongly support this assumption.
Publications

Strack, D.; Fester, T.; Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots New Phytol. 172, 22-34, (2006) DOI: 10.1111/j.1469-8137.2006.01837.x

Plant root‐colonizing arbuscular mycorrhizal (AM) fungi activate the methylerythritol phosphate pathway, carotenoid biosynthesis and oxidative carotenoid cleavage in roots, leading to C13 and C14 apocarotenoids, that is, cyclohexenone and mycorradicin derivatives. Mycorradicin causes the characteristic yellow coloration of many AM roots accumulating within a complex mixture of unknown components. The accumulating C13 cyclohexenones exhibit various ring substitutions and different glycosyl moieties. Transcript levels of the first two enzymes of the MEP pathway, 1‐deoxy‐d ‐xylulose 5‐phosphate synthase and 1‐deoxy‐d ‐xylulose 5‐phosphate reductoisomerase, and of the carotenoid pathway, phytoene desaturase and ζ‐carotene desaturase, along with a carotenoid‐cleaving dioxygenase, are markedly increased in AM roots. This correlates with proliferation and reorganization of root plastids. These results allow at this point only speculation about the significance of apocarotenoid accumulation: participation in the production of signaling molecules and control of fungal colonization or protection against soil‐borne pathogens; protection of root cells against oxidative damage of membranes by reactive oxygen species; and promotion of the symbiotic interactions between plant roots and AM fungi.
Publications

Stehle, F.; Brandt, W.; Milkowski, C.; Strack, D.; Structure determinants and substrate recognition of serine carboxypeptidase-like acyltransferases from plant secondary metabolism FEBS Lett. 580, 6366-6374, (2006) DOI: 10.1016/j.febslet.2006.10.046

Structures of the serine carboxypeptidase‐like enzymes 1‐O ‐sinapoyl‐β‐glucose:l ‐malate sinapoyltransferase (SMT) and 1‐O ‐sinapoyl‐β‐glucose:choline sinapoyltransferase (SCT) were modeled to gain insight into determinants of specificity and substrate recognition. The structures reveal the α/β‐hydrolase fold as scaffold for the catalytic triad Ser‐His‐Asp. The recombinant mutants of SMT Ser173Ala and His411Ala were inactive, whereas Asp358Ala displayed residual activity of 20%. 1‐O ‐sinapoyl‐β‐glucose recognition is mediated by a network of hydrogen bonds. The glucose moiety is recognized by a hydrogen bond network including Trp71, Asn73, Glu87 and Asp172. The conserved Asp172 at the sequence position preceding the catalytic serine meets sterical requirements for the glucose moiety. The mutant Asn73Ala with a residual activity of 13% underscores the importance of the intact hydrogen bond network. Arg322 is of key importance by hydrogen bonding of 1‐O ‐sinapoyl‐β‐glucose and l ‐malate. By conformational change, Arg322 transfers l ‐malate to a position favoring its activation by His411. Accordingly, the mutant Arg322Glu showed 1% residual activity. Glu215 and Arg219 establish hydrogen bonds with the sinapoyl moiety. The backbone amide hydrogens of Gly75 and Tyr174 were shown to form the oxyanion hole, stabilizing the transition state. SCT reveals also the catalytic triad and a hydrogen bond network for 1‐O ‐sinapoyl‐β‐glucose recognition, but Glu274, Glu447, Thr445 and Cys281 are crucial for positioning of choline.
Publications

Sharma, V. K.; Monostori, T.; Göbel, C.; Hänsch, R.; Bittner, F.; Wasternack, C.; Feussner, I.; Mendel, R. R.; Hause, B.; Schulze, J.; Transgenic barley plants overexpressing a 13-lipoxygenase to modify oxylipin signature Phytochemistry 67, 264-276, (2006) DOI: 10.1016/j.phytochem.2005.11.009

Three chimeric gene constructs were designed comprising the full length cDNA of a lipoxygenase (LOX) from barley (LOX2:Hv:1) including its chloroplast targeting sequence (cTP) under control of either (1) CaMV35S- or (2) polyubiquitin-1-promoter, whereas the third plasmid contains 35S promoter and the cDNA without cTP. Transgenic barley plants overexpressing LOX2:Hv:1 were generated by biolistics of scutella from immature embryos. Transformation frequency for 35S::LOX with or without cTP was in a range known for barley particle bombardment, whereas for Ubi::cTP-LOX no transgenic plants were detected. In general, a high number of green plantlets selected on bialaphos became yellow and finally died either in vitro or after potting. All transgenic plants obtained were phenotypically indistinguishable from wild type plants and all of them set seeds. The corresponding protein (LOX-100) in transgenic T0 and T1 plants accumulated constitutively to similar levels as in the jasmonic acid methyl ester (JAME)-treated wild type plants. Moreover, LOX-100 was clearly detectable immunocytochemically within the chloroplasts of untreated T0 plants containing the LOX-100-cDNA with the chloroplast target sequence. In contrast, an exclusive localization of LOX-100 in the cytoplasm was detectable when the target sequence was removed. In comparison to sorbitol-treated wild type leaves, analysis of oxylipin profiles in T2 progenies showed higher levels of jasmonic acid (JA) for those lines that displayed elevated levels of LOX-100 in the chloroplasts and for those lines that harboured LOX-100 in the cytoplasm, respectively. The studies demonstrate for the first time the constitutive overexpression of a cDNA coding for a 13-LOX in a monocotyledonous species and indicate a link between the occurrence of LOX-100 and senescence.
Publications

Schliemann, W.; Schneider, B.; Wray, V.; Schmidt, J.; Nimtz, M.; Porzel, A.; Böhm, H.; Flavonols and an indole alkaloid skeleton bearing identical acylated glycosidic groups from yellow petals of Papaver nudicaule Phytochemistry 67, 191-201, (2006) DOI: 10.1016/j.phytochem.2005.11.002

From yellow petals of Iceland poppy, besides the known flavonoid gossypitrin, seven kaempferol derivatives were isolated. In addition to kaempferol 3-O-β-sophoroside and kaempferol 3-O-β-sophoroside-7-O-β-glucoside, known from other plants, the mono- and dimalonyl conjugates of the latter were identified by MS and NMR spectroscopy. Structure analyses of a set of co-occurring pigments, the nudicaulins, revealed that they have the identical acylated glycoside moieties attached to a pentacyclic indole alkaloid skeleton for which the structure of 19-(4-hydroxyphenyl)-10H-1,10-ethenochromeno[2,3-b]indole-6,8,18-triol was deduced from MS and NMR as well as chemical and chiroptical methods.
Publications

Schliemann, W.; Schmidt, J.; Nimtz, M.; Wray, V.; Fester, T.; Strack, D.; Erratum to “Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum” [Phytochem. 67 (2006) 1196–1205] Phytochemistry 67, 2090, (2006) DOI: 10.1016/j.phytochem.2006.07.018

0
Publications

Schliemann, W.; Schmidt, J.; Nimtz, M.; Wray, V.; Fester, T.; Strack, D.; Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum Phytochemistry 67, 1196-1205, (2006) DOI: 10.1016/j.phytochem.2006.05.005

Colonization of roots of Ornithogalum umbellatum by the arbuscular mycorrhizal fungus Glomus intraradices induced the accumulation of different types of apocarotenoids. In addition to the mycorrhiza-specific occurrence of cyclohexenone derivatives and the “yellow pigment” described earlier, free mycorradicin and numerous mycorradicin derivatives were detected in a complex apocarotenoid mixture for the first time. From the accumulation pattern of the mycorradicin derivatives their possible integration into the continuously accumulating “yellow pigment” is suggested. Structure analyses of the cyclohexenone derivatives by MS and NMR revealed that they are mono-, di- and branched triglycosides of blumenol C, 13-hydroxyblumenol C, and 13-nor-5-carboxy-blumenol C, some of which contain terminal rhamnose as sugar moiety.
Publications

Schaarschmidt, S.; Roitsch, T.; Hause, B.; Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots J. Exp. Bot. 57, 4015-4023, (2006) DOI: 10.1093/jxb/erl172

Extracellular invertases are suggested to play a crucial role in the arbuscular mycorrhiza (AM) symbiosis to fulfil the increased sink function of the mycorrhizal root and the supply of the obligate biotrophic AM fungus with hexoses. In tomato (Lycopersicon esculentum), LIN6 represents an apoplastic invertase which is described as a key enzyme in establishing and maintaining sink metabolism. In this study, transcript levels of LIN6 were analysed in tomato roots colonized with the AM fungus Glomus intraradices. Using real-time RT–PCR, a nearly 3-fold increase in LIN6 mRNA levels was detected at late stages of mycorrhization (11 weeks after inoculation). A 1.8-fold induction could already be achieved at earlier stages (5 weeks after inoculation) using higher inoculum concentrations, whereas wounding of non-mycorrhizal roots resulted in up to 12-fold enhanced LIN6 transcripts. As revealed by in situ hybridization, the expression of LIN6 upon mycorrhization was specifically restricted to colonized cells and to the central cylinder. Such a strongly localized pattern due to mycorrhizal cells and to the central core could also be shown for promoter activity using transgenic Nicotiana tabacum plants expressing the gene coding for β-glucuronidase under the control of the LIN6 promoter. The moderate induction of LIN6 expression in mycorrhizal tomato roots compared with stress-stimulated induction suggested a fine-tuning in the activation of sink metabolism in the mutualistic interaction, avoiding stress-induced defence reactions.
Publications

Lohse, S.; Hause, B.; Hause, G.; Fester, T.; FtsZ Characterization and Immunolocalization in the Two Phases of Plastid Reorganization in Arbuscular Mycorrhizal Roots of Medicago truncatula Plant Cell Physiol. 47, 1124-1134, (2006) DOI: 10.1093/pcp/pcj083

We have analyzed plastid proliferation in root cortical cells of Medicago truncatula colonized by arbuscular mycorrhizal (AM) fungi by concomitantly labeling fungal structures, root plastids, a protein involved in plastid division (FtsZ1) and a protein involved in the biosynthesis of AM-specific apocarotenoids. Antibodies directed against FtsZ1 have been generated after heterologous expression of the respective gene from M. truncatula and characterization of the gene product. Analysis of enzymatic activity and assembly experiments showed similar properties of this protein when compared with the bacterial proteins. Immunocytological experiments allowed two phases of fungal and plastid development to be clearly differentiated and plastid division to be monitored during these phases. In the early phase of arbuscule development, lens-shaped plastids, intermingled with the arbuscular branches, divide frequently. Arbuscule degradation, in contrast, is characterized by large, tubular plastids, decorated by a considerable number of FtsZ division rings.
IPB Mainnav Search