jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Displaying results 1 to 10 of 13.

Publications

Schaarschmidt, S.; Qu, N.; Strack, D.; Sonnewald, U.; Hause, B.; Local Induction of the alc Gene Switch in Transgenic Tobacco Plants by Acetaldehyde Plant Cell Physiol. 45, 1566-1577, (2004) DOI: 10.1093/pcp/pch177

The alc promoter system, derived from the filamentous fungi Aspergillus nidulans, allows chemically regulated gene expression in plants and thereby the study of gene function as well as metabolic and developmental processes. In addition to ethanol, this system can be activated by acetaldehyde, described as the physiological inducer in A. nidulans. Here, we show that in contrast to ethanol, acetaldehyde allows tissue-specific activation of the alc promoter in transgenic tobacco plants. Soil drenching with aqueous acetaldehyde solutions at a concentration of 0.05% (v/v) resulted in the rapid and temporary induction of the alc gene expression system exclusively in roots. In addition, the split root system allows activation to be restricted to the treated part of the root. The temporary activation of the alc system by soil drenching with acetaldehyde could be prolonged over several weeks by subsequent applications at intervals of 7 d. This effect was demonstrated for the root-specific induction of a yeast-derived apoplast-located invertase under the control of the alcohol-inducible promoter system. In leaves, which exhibit a lower responsiveness to acetaldehyde than roots, the alc system was induced in the directly treated tissue only. Thus, acetaldehyde can be used as a local inducer of the alc gene expression system in tobacco plants.
Publications

Milkowski, C.; Strack, D.; Serine carboxypeptidase-like acyltransferases Phytochemistry 65, 517-524, (2004) DOI: 10.1016/j.phytochem.2003.12.018

In plant secondary metabolism, an alternative pathway of ester formation is facilitated by acyltransferases accepting 1-O-β-acetal esters (1-O-β-glucose esters) as acyl donors instead of coenzyme A thioesters. Molecular data indicate homology of these transferases with hydrolases of the serine carboxypeptidase type defining them as serine carboxypeptidase-like (SCPL) acyltransferases. During evolution, they apparently have been recruited from serine carboxypeptidases and adapted to take over acyl transfer function. SCPL acyltransferases belong to the highly divergent class of α/β hydrolases. These enzymes make use of a catalytic triad formed by a nucleophile, an acid and histidine acting as a charge relay system for the nucleophilic attack on amide or ester bonds. In analogy to SCPL acyltransferases, bacterial thioesterase domains are known which favour transferase activity over hydrolysis. Structure elucidation reveals water exclusion and a distortion of the oxyanion hole responsible for the changed activity. In plants, SCPL proteins form a large family. By sequence comparison, a distinguished number of Arabidopsis SCPL proteins cluster with proven SCPL acyltransferases. This indicates the occurrence of a large number of SCPL proteins co-opted to catalyse acyltransfer reactions. SCPL acyltransferases are ideal systems to investigate principles of functional adaptation and molecular evolution of plant genes.Serine carboxypeptidase-like (SCPL) acyltransferases are involved in the formation of esters, accepting 1-O-β-glucose esters as acyl donors. SCPL proteins make use of a catalytic triad formed by a nucleophile, an acid and histidine acting as a charge relay system for the nucleophilic attack on amide or ester bonds. During evolution, these enzymes apparently have been recruited from serine carboxypeptidases and adapted to take over acyl transfer instead of hydrolysis functions. By sequence comparison, a distinguished number of Arabidopsis SCPL proteins cluster with proven SCPL acyltransferases. These enzymes might be ideal systems to investigate principles of functional adaptation and molecular evolution of plant genes.
Publications

Milkowski, C.; Baumert, A.; Schmidt, D.; Nehlin, L.; Strack, D.; Molecular regulation of sinapate ester metabolism in Brassica napus: expression of genes, properties of the encoded proteins and correlation of enzyme activities with metabolite accumulation Plant J. 38, 80-92, (2004) DOI: 10.1111/j.1365-313X.2004.02036.x

Members of the Brassicaceae family accumulate specific sinapate esters, i.e. sinapoylcholine (sinapine), which is considered as a major antinutritive compound in seeds of important crop plants like Brassica napus , and sinapoylmalate, which is implicated in UV‐B tolerance in leaves. We have studied the molecular regulation of the sinapate ester metabolism in B. napus , and we describe expression of genes, some properties of the encoded proteins and profiles of the metabolites and enzyme activities. The cloned cDNAs encoding the key enzymes of sinapine biosynthesis, UDP‐glucose (UDP‐Glc):B. napus sinapate glucosyltransferase (BnSGT1) and sinapoylglucose:B. napus choline sinapoyltransferase (BnSCT), were functionally expressed. BnSGT1 belongs to a subgroup of plant GTs catalysing the formation of 1‐O‐hydroxycinnamoyl‐β‐d ‐glucoses. BnSCT is another member of serine carboxypeptidase‐like (SCPL) family of acyltransferases. The B. napus genome contains at least two SGT and SCT genes, each derived from its progenitors B. oleracea and B. rapa . BnSGT1 and BnSCT activities are subjected to pronounced transcriptional regulation. BnSGT1 transcript level increases throughout early stages of seed development until the early cotyledonary stage, and stays constant in later stages. The highest level of BnSGT1 transcripts is reached in 2‐day‐old seedlings followed by a dramatic decrease. In contrast, expression of BnSCT is restricted to developing seeds. Regulation of gene expression at the transcript level seems to be responsible for changes of BnSGT1 and BnSCT activities during seed and seedling development of B. napus . Together with sinapine esterase (SCE) and sinapoylglucose:malate sinapoyltransferase (SMT), activities of BnSGT1 and BnSCT show a close correlation with the accumulation kinetics of the corresponding metabolites.
Publications

Miersch, O.; Weichert, H.; Stenzel, I.; Hause, B.; Maucher, H.; Feussner, I.; Wasternack, C.; Constitutive overexpression of allene oxide cyclase in tomato (Lycopersicon esculentum cv. Lukullus) elevates levels of some jasmonates and octadecanoids in flower organs but not in leaves Phytochemistry 65, 847-856, (2004) DOI: 10.1016/j.phytochem.2004.01.016

The allene oxide cyclase (AOC), an enzyme in jasmonate biosynthesis, occurs in vascular bundles and ovules of tomato flowers which exhibit a tissue-specific oxylipin signature (Plant J. 24, 113-126, 2000). Constitutive overexpression of the AOC did not led to altered levels of jasmonates in leaves, but these levels increased upon wounding or other stresses suggesting regulation of jasmonate biosynthesis by substrate availability (Plant J. 33, 577-589, 2003). Here, we show dramatic changes in levels of jasmonic acid (JA), of 12-oxo-phytodienoic acid (OPDA), their methyl esters (JAME, OPDAME), and of dinor-OPDA in most flower organs upon constitutive overexpression of AOC. Beside a dominant occurrence of OPDAME and JA in most flower organs, the ratio among the various compounds was altered differentially in the organs of transgenic flowers, e.g. OPDAME increased up to 53-fold in stamen, and JA increased about 51-fold in buds and 7.5-fold in sepals. The increase in jasmonates and octadecanoids was accompanied by decreased levels of free lipid hydro(per)oxy compounds. Except for 16:2, the AOC overexpression led to a significant increase in free but not esterified polyunsaturated fatty acids in all flower organs. The data suggest different regulation of JA biosynthesis in leaves and flowers of tomato.Constitutive overexpression of the AOC increases in all flower organs levels of some jasmonates and octadecanoids, alters the ratios among the compounds, decreases levels of free lipid hydro(per)oxy compounds and increases levels of free but not of esterified polyunsaturated fatty acids.
Publications

Maucher, H.; Stenzel, I.; Miersch, O.; Stein, N.; Prasad, M.; Zierold, U.; Schweizer, P.; Dorer, C.; Hause, B.; Wasternack, C.; The allene oxide cyclase of barley (Hordeum vulgare L.)—cloning and organ-specific expression Phytochemistry 65, 801-811, (2004) DOI: 10.1016/j.phytochem.2004.01.009

The naturally occurring enantiomer of the various octadecanoids and jasmonates is established in a biosynthetic step catalyzed by the allene oxide cyclase (AOC). The AOC converts an allene oxide formed by an allene oxide synthase (AOS). Here, we show cloning and characterization of cDNAs encoding the AOC and a third AOS, respectively, in addition to the two AOSs previously published (Plant J. 21, 199–213, 2000). The ORF of the AOC-cDNA of 717 bp codes for a protein of 238 amino acid residues carrying a putative chloroplast target sequence. Overexpression without chloroplast target sequence revealed AOC activity. The AOC was found to be a single copy gene which mapped on chromosome 6H. AOC mRNA accumulation appeared in leaf segments upon treatment with various jasmonates, octadecanoids and ABA or during stress such as treatment with sorbitol or glucose solutions. Infection with powdery mildew activated AOC expression in susceptible and resistant lines of barley which correlated with PR1b expression. Among different tissues of barley seedlings, the scutellar node and leaf base accumulated AOC mRNA preferentially which correlated with accumulation of mRNAs for other biosynthetic enzymes (lipoxygenases, AOSs). AOC mRNA accumulation appeared also abundantly in parts of the root containing the tip and correlated with elevated levels of jasmonates. The data suggest a link of AOC expression and JA formation and support role of JA in stress responses and development of barley.Barley plants contain one allene oxide cyclase and three allene oxide synthases which are up-regulated during seedling development accompanied by elevated levels of jasmonate.
Publications

Lukačin, R.; Matern, U.; Specker, S.; Vogt, T.; Cations modulate the substrate specificity of bifunctional class I O-methyltransferase from Ammi majus FEBS Lett. 577, 367-370, (2004) DOI: 10.1016/j.febslet.2004.10.032

Caffeoyl‐coenzyme A O‐methyltransferase cDNA was cloned from dark‐grown Ammi majus L. (Apiaceae) cells treated with a crude fungal elicitor and the open reading frame was expressed in Escherichia coli . The translated polypeptide of 27.1‐kDa shared significant identity to other members of this highly conserved class of proteins and was 98.8% identical to the corresponding O‐methyltransferase from parsley. For biochemical characterization, the recombinant enzyme could be purified to apparent homogeneity by metal‐affinity chromatography, although the recombinant enzyme did not contain any affinity tag. Based on sequence analysis and substrate specificity, the enzyme classifies as a cation‐dependent O‐methyltransferase with pronounced preference for caffeoyl coenzyme A, when assayed in the presence of Mg2+‐ions. Surprisingly, however, the substrate specificity changed dramatically, when Mg2+ was replaced by Mn2+ or Co2+ in the assays. This effect could point to yet unknown functions and substrate specificities in situ and suggests promiscuous roles for the lignin specific cluster of plant O‐methyltransferases.
Publications

Isayenkov, S.; Fester, T.; Hause, B.; Rapid determination of fungal colonization and arbuscule formation in roots of Medicago truncatula using real-time (RT) PCR J. Plant Physiol. 161, 1379-1383, (2004) DOI: 10.1016/j.jplph.2004.04.012

The quantifications of root colonization and symbiotic activity in the arbuscular mycorrhizal (AM) association of Medicago truncatula and Glomus intraradices were performed by quantitative polymerase chain reaction (real-time PCR). A strong correlation between fungal colonization of the root system and the amounts of fungal rDNA and rRNA were shown. In contrast, the transcript levels of the AM-specific phosphate transporter 4 from M. truncatula (MtPT4) correlate with arbuscule formation rather than with fungal colonization. These results suggest (i) that real-time PCR assay is a rapid, useful, and accurate method for the determination of arbuscular mycorrhizal features, (ii) that the amount of fungal rDNA or rRNA is a good parameter to estimate fungal colonization, and (iii) that it is necessary to evaluate the amount of other transcripts—like the MtPT4 transcript—to obtain additional information about the symbiotic state of the colonized root system.
Publications

Hans, J.; Brandt, W.; Vogt, T.; Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis Plant J. 39, 319-333, (2004) DOI: 10.1111/j.1365-313X.2004.02133.x

In livingstone daisy (Dorotheanthus bellidiformis ), betanidin 5‐O‐glucosyltransferase (UGT73A5) is involved in the regiospecific glucosylation of betanidin and various flavonols. Based on sequence alignments several amino acid candidates which might be essential for catalysis were identified. The selected amino acids of the functionally expressed protein, suggested to be involved in substrate binding and turnover, were substituted via site‐directed mutagenesis. The substitution of two highly conserved amino acids, Glu378, located in the proposed UDP‐glucose binding site, and His22, located close to the N‐terminus, led to the complete loss of enzyme activity. A 3D model of this regiospecific betanidin and flavonoid glucosyltransferase was constructed and the active site modelled. This model was based on the crystallographic structure of a bacterial UDP‐glucose‐dependent glucosyltransferase from Amycolatopsis orientalis used as a template and the generated null mutations. To explain the observed inversion in the configuration of the bound sugar, semiempirical calculations favour an SN‐1 reaction, as one plausible alternative to the generally proposed SN‐2 mechanism discussed for plant natural product glucosyltransferases. The calculated structural data do not only explain the abstraction of a proton from the acceptor betanidin, but further imply that the reaction mechanism might also involve a catalytic triad, with similarities described for the serine protease family.
Publications

Hans, J.; Hause, B.; Strack, D.; Walter, M. H.; Cloning, Characterization, and Immunolocalization of a Mycorrhiza-Inducible 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase in Arbuscule-Containing Cells of Maize Plant Physiol. 134, 614-624, (2004) DOI: 10.1104/pp.103.032342

Colonization of plant roots by symbiotic arbuscular mycorrhizal fungi frequently leads to the accumulation of several apocarotenoids. The corresponding carotenoid precursors originate from the plastidial 2-C-methyl-d-erythritol 4-phosphate pathway. We have cloned and characterized 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), catalyzing the first committed step of the pathway, from maize (Zea mays). Functional identification was accomplished by heterologous expression of sequences coding for the mature protein in Escherichia coli. DXR is up-regulated in maize roots during mycorrhization as shown at transcript and protein levels, but is also abundant in leaves and young seedlings. Inspection of sequenced genomes and expressed sequence tag (EST) databases argue for a single-copy DXR gene. Immunolocalization studies in mycorrhizal roots using affinity-purified antibodies revealed a DXR localization in plastids around the main symbiotic structures, the arbuscules. DXR protein accumulation is tightly correlated with arbuscule development. The highest level of DXR protein is reached around maturity and initial senescence of these structures. We further demonstrate the formation of a DXR-containing plastidial network around arbuscules, which is highly interconnected in the mature, functional state of the arbuscules. Our findings imply a functional role of a still unknown nature for the apocarotenoids or their respective carotenoid precursors in the arbuscular life cycle.
Publications

Vogt, T.; Regiospecificity and kinetic properties of a plant natural product O-methyltransferase are determined by its N-terminal domain FEBS Lett. 561, 159-162, (2004) DOI: 10.1016/S0014-5793(04)00163-2

A recently discovered, S‐adenosyl‐L ‐methionine and bivalent cation‐dependent O‐methyltransferase from the ice plant, Mesembryanthemum crystallinum , is involved in the methylation of various flavonoid and phenylpropanoid conjugates. Differences in regiospecificity as well as altered kinetic properties of the recombinant as compared to the native plant O‐methyltransferase can be attributed to differences in the N‐terminal part of the protein. Upon cleavage of the first 11 amino acids, the recombinant protein displays essentially the same substrate specificity as observed earlier for the native plant enzyme. Product formation of the newly designed, truncated recombinant enzyme is consistent with light‐induced accumulation of methylated flavonoid conjugates in the ice plant. Therefore, substrate affinity and regiospecificity of an O‐methyltransferase in vivo and in vitro can be controlled by cleavage of an N‐terminal domain.
IPB Mainnav Search