jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 1 to 4 of 4.

Preprints

Zabel, S.; Brandt, W.; Porzel, A.; Athmer, B.; Kortbeek, R. W. J.; Bleeker, P. M.; Tissier, A.; Two novel 7-epi-zingiberene derivatives with biological activity from Solanum habrochaites are produced by a single cytochrome P450 monooxygenase bioRxiv (2020) DOI: 10.1101/2020.04.21.052571

Secretions from glandular trichomes potentially protect the plant against a variety of aggressors. In the tomato genus, wild species constitute a rich source of chemical diversity produced at the leaf surface by glandular trichomes. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we identify two derivatives of 7-epi-zingiberene from S. habrochaites that had not been reported as yet. We identified them as 9-hydroxy-zingiberene and 9-hydroxy-10,11-epoxyzingiberene. Using a combination of genetics and transcriptomics we identified a single cytochrome P450 oxygenase, ShCYP71D184 that carries out two successive oxidations to generate the two sesquiterpenoids. Bioactivity assays showed that only 9-hydroxy-10,11-epoxyzingiberene exhibits substantial toxicity against B. tabaci. In addition, both 9-hydroxy-zingiberene and 9-hydroxy-10,11-epoxyzingiberene display substantial growth inhibitory activities against a range of microorganisms, including Bacillus subtilis, Phytophtora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.
Publications

Yadav, H.; Dreher, D.; Athmer, B.; Porzel, A.; Gavrin, A.; Baldermann, S.; Tissier, A.; Hause, B.; Medicago TERPENE SYNTHASE 10 Is Involved in Defense Against an Oomycete Root Pathogen Plant Physiol. 180, 1598-1613, (2019) DOI: 10.1104/pp.19.00278

In nature, plants interact with numerous beneficial or pathogenic soil-borne microorganisms. Plants have developed various defense strategies to expel pathogenic microbes, some of which function soon after pathogen infection. We used Medicago truncatula and its oomycete pathogen Aphanomyces euteiches to elucidate early responses of the infected root. A. euteiches causes root rot disease in legumes and is a limiting factor in legume production. Transcript profiling of seedlings and adult plant roots inoculated with A. euteiches zoospores for 2 h revealed specific upregulation of a gene encoding a putative sesquiterpene synthase (M. truncatula TERPENE SYNTHASE 10 [MtTPS10]) in both developmental stages. MtTPS10 was specifically expressed in roots upon oomycete infection. Heterologous expression of MtTPS10 in yeast led to production of a blend of sesquiterpenes and sesquiterpene alcohols, with NMR identifying a major peak corresponding to himalachol. Moreover, plants carrying a tobacco (Nicotiana tabacum) retrotransposon Tnt1 insertion in MtTPS10 lacked the emission of sesquiterpenes upon A. euteiches infection, supporting the assumption that the identified gene encodes a multiproduct sesquiterpene synthase. Mttps10 plants and plants with reduced MtTPS10 transcript levels created by expression of an MtTPS10-artificial microRNA in roots were more susceptible to A. euteiches infection than were the corresponding wild-type plants and roots transformed with the empty vector, respectively. Sesquiterpenes produced by expression of MtTPS10 in yeast also inhibited mycelial growth and A. euteiches zoospore germination. These data suggest that sesquiterpene production in roots by MtTPS10 plays a previously unrecognized role in the defense response of M. truncatula against A. euteiches.
Books and chapters

Wolfram, K.; Porzel, A.; Hinneburg, A.; Similarity Search for Multi-dimensional NMR-Spectra of Natural Products Lecture Notes in Computer Science 4213, 650-658, (2006) ISBN: 978-3-540-46048-0 DOI: 10.1007/11871637_67

Searching and mining nuclear magnetic resonance (NMR)-spectra of naturally occurring products is an important task to investigate new potentially useful chemical compounds. We develop a set-based similarity function, which, however, does not sufficiently capture more abstract aspects of similarity. NMR-spectra are like documents, but consists of continuous multi-dimensional points instead of words. Probabilistic semantic indexing (PLSI) is an retrieval method, which learns hidden topics. We develop several mappings from continuous NMR-spectra to discrete text-like data. The new mappings include redundancies into the discrete data, which proofs helpful for the PLSI-model used afterwards. Our experiments show that PLSI, which is designed for text data created by humans, can effectively handle the mapped NMR-data originating from natural products. Additionally, PLSI combined with the new mappings is able to find meaningful ”topics” in the NMR-data.
Publications

Baumert, A.; Schumann, B.; Porzel, A.; Schmidt, J.; Strack, D.; Triterpenoids from Pisolithus tinctorius isolates and ectomycorrhizas Phytochemistry 45, 499-504, (1997) DOI: 10.1016/S0031-9422(97)00007-1

Two new triterpenoids have been identified by spectroscopic methods from mycelia of Pisolithus tinctorius as 24-ethyllanosta-8,24(241)-diene-3β,22ξ-diol and (22S)-24,25-dimethyllanosta-8-en-22,241-epoxy-3β-ol-241-one (25-methylpisolactone) along with the two known triterpenoids 24-methyllanosta-8,24(241)-diene-3β,22ξ-diol and (22S)-24-methyllanosta-8-en-22,241-epoxy-3β-ol-241-one (pisolactone). Quantification of these compounds in fungal isolates (surface and suspension cultures) and Pinus sylvestris ectomycorrhizas showed that the amount of the new triterpenoids was markedly higher in the mycorrhizas as in the isolates.
IPB Mainnav Search