jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 1 to 3 of 3.

Publications

Steiner, U.; Schliemann, W.; Böhm, H.; Strack, D.; Tyrosinase involved in betalain biosynthesis of higher plants Planta 208, 114-124, (1999) DOI: 10.1007/s004250050541

A tyrosine-hydroxylating enzyme was partially purified from betacyanin-producing callus cultures of Portulaca grandiflora Hook. by using hydroxyapatite chromatography and gel filtration. It was characterized as a tyrosinase (EC 1.14.18.1 and EC 1.10.3.1) by inhibition experiments with copper-chelating agents and detection of concomitant o-diphenol oxidase activity. The tyrosinase catalysed both the formation of L-(3,4-dihydroxyphenyl)-alanine (Dopa) and cyclo-Dopa which are the pivotal precursors in betalain biosynthesis. The hydroxylating activity with a pH optimum of 5.7 was specific for L-tyrosine and exhibited reaction velocities with L-tyrosine and D-tyrosine in a ratio of 1:0.2. Other monophenolic substrates tested were not accepted. The enzyme appeared to be a monomer with an apparent molecular mass of ca. 53 kDa as estimated by gel filtration and SDS-PAGE. Some other betalain-producing plants and cell cultures were screened for tyrosinase activity; however, activities could only be detected in red callus cultures and plants of P. grandiflora as well as in plants, hairy roots and cell cultures of Beta vulgaris L. subsp. vulgaris (Garden Beet Group), showing a clear correlation between enzyme activity and betacyanin content in young B. vulgaris plants. We propose that this tyrosinase is specifically involved in the betalain biosynthesis of higher plants.
Publications

Schliemann, W.; Steiner, U.; Strack, D.; Betanidin formation from dihydroxyphenylalanine in a model assay system Phytochemistry 49, 1593-1598, (1998) DOI: 10.1016/S0031-9422(98)00276-3

Formation of betanidin, the aglycone of the red–violet betacyanins, has been demonstrated by a two-step model assay system. In the first step, dihydroxyphenylalanine (Dopa) was incubated with a Dopa dioxygenase preparation from Amanita muscaria, resulting in the formation of 4,5-seco-Dopa that spontaneously recyclized to betalamic acid. In the second step, a tyrosinase preparation from Portulaca grandiflora was added to the Dopa dioxygenase assay, resulting in Dopa oxidation followed by a spontaneous formation of cyclo-Dopa that, in turn, reacted spontaneously with betalamic acid to form betanidin. Thus, two enzymatic reactions, Dopa extradiol ring cleavage by the fungal enzyme and Dopa oxidation by the plant enzyme, initiate three spontaneous steps: the formation of cyclo-Dopa and betalamic acid and finally the condensation of these compounds to betanidin.
Publications

Steiner, U.; Schliemann, W.; Strack, D.; Assay for Tyrosine Hydroxylation Activity of Tyrosinase from Betalain-Forming Plants and Cell Cultures Anal. Biochem. 238, 72-75, (1996) DOI: 10.1006/abio.1996.0253

In our studies on tyrosinase-catalyzed tyrosine hydroxylation, possibly involved in betalain biosynthesis, we have evaluated different assays for the detection and quantification of the enzymatic product Dopa with respect to sensitivity, simplicity, and suitability for automatization. A tyrosinase assay including reversed-phase high-performance liquid chromatography with isocratic elution and fluorescence detection has been developed (native fluorescence of Dopa; excitation at 281 nm, emission at 314 nm). This improved assay was sensitive (detection limit: 2 pmol Dopa) and showed a wide linear range of Dopa detection (10 pmol–20 nmol Dopa). The method proved to be suitable for high-performance liquid chromatography with an autosampler and has been applied for measuring tyrosinase activity of cell cultures and different tissues ofPortulaca grandiflora.
IPB Mainnav Search