jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 1 to 5 of 5.

Publications

Dobritzsch, S.; Weyhe, M.; Schubert, R.; Dindas, J.; Hause, G.; Kopka, J.; Hause, B.; Dissection of jasmonate functions in tomato stamen development by transcriptome and metabolome analyses BMC Biol. 13, 28, (2015) DOI: 10.1186/s12915-015-0135-3

BackgroundJasmonates are well known plant signaling components required for stress responses and development. A prominent feature of jasmonate biosynthesis or signaling mutants is the loss of fertility. In contrast to the male sterile phenotype of Arabidopsis mutants, the tomato mutant jai1-1 exhibits female sterility with additional severe effects on stamen and pollen development. Its senescence phenotype suggests a function of jasmonates in regulation of processes known to be mediated by ethylene. To test the hypothesis that ethylene involved in tomato stamen development is regulated by jasmonates, a temporal profiling of hormone content, transcriptome and metabolome of tomato stamens was performed using wild type and jai1-1.ResultsWild type stamens showed a transient increase of jasmonates that is absent in jai1-1. Comparative transcriptome analyses revealed a diminished expression of genes involved in pollen nutrition at early developmental stages of jai1-1 stamens, but an enhanced expression of ethylene-related genes at late developmental stages. This finding coincides with an early increase of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in jai1-1 and a premature pollen release from stamens, a phenotype similarly visible in an ethylene overproducing mutant. Application of jasmonates to flowers of transgenic plants affected in jasmonate biosynthesis diminished expression of ethylene-related genes, whereas the double mutant jai1-1 NeverRipe (ethylene insensitive) showed a complementation of jai1-1 phenotype in terms of dehiscence and pollen release.ConclusionsOur data suggest an essential role of jasmonates in the temporal inhibition of ethylene production to prevent premature desiccation of stamens and to ensure proper timing in flower development.
Publications

Weichert, N.; Saalbach, I.; Weichert, H.; Kohl, S.; Erban, A.; Kopka, J.; Hause, B.; Varshney, A.; Sreenivasulu, N.; Strickert, M.; Kumlehn, J.; Weschke, W.; Weber, H.; Increasing Sucrose Uptake Capacity of Wheat Grains Stimulates Storage Protein Synthesis Plant Physiol. 152, 698-710, (2010) DOI: 10.1104/pp.109.150854

Increasing grain sink strength by improving assimilate uptake capacity could be a promising approach toward getting higher yield. The barley (Hordeum vulgare) sucrose transporter HvSUT1 (SUT) was expressed under control of the endosperm-specific Hordein B1 promoter (HO). Compared with the wild type, transgenic HOSUT grains take up more sucrose (Suc) in vitro, showing that the transgene is functional. Grain Suc levels are not altered, indicating that Suc fluxes are influenced rather than steady-state levels. HOSUT grains have increased percentages of total nitrogen and prolamins, which is reflected in increased levels of phenylalanine, tyrosine, tryptophan, isoleucine, and leucine at late grain development. Transcript profiling indicates specific stimulation of prolamin gene expression at the onset of storage phase. Changes in gene expression and metabolite levels related to carbon metabolism and amino acid biosynthesis suggest deregulated carbon-nitrogen balance, which together indicate carbon sufficiency and relative depletion of nitrogen. Genes, deregulated together with prolamin genes, might represent candidates, which respond positively to assimilate supply and are related to sugar-starch metabolism, cytokinin and brassinosteroid functions, cell proliferation, and sugar/abscisic acid signaling. Genes showing inverse expression patterns represent potential negative regulators. It is concluded that HvSUT1 overexpression increases grain protein content but also deregulates the metabolic status of wheat (Triticum aestivum) grains, accompanied by up-regulated gene expression of positive and negative regulators related to sugar signaling and assimilate supply. In HOSUT grains, alternating stimulation of positive and negative regulators causes oscillatory patterns of gene expression and highlights the capacity and great flexibility to adjust wheat grain storage metabolism in response to metabolic alterations.
Publications

Mrosk, C.; Forner, S.; Hause, G.; Küster, H.; Kopka, J.; Hause, B.; Composite Medicago truncatula plants harbouring Agrobacterium rhizogenes-transformed roots reveal normal mycorrhization by Glomus intraradices J. Exp. Bot. 60, 3797-3807, (2009) DOI: 10.1093/jxb/erp220

Composite plants consisting of a wild-type shoot and a transgenic root are frequently used for functional genomics in legume research. Although transformation of roots using Agrobacterium rhizogenes leads to morphologically normal roots, the question arises as to whether such roots interact with arbuscular mycorrhizal (AM) fungi in the same way as wild-type roots. To address this question, roots transformed with a vector containing the fluorescence marker DsRed were used to analyse AM in terms of mycorrhization rate, morphology of fungal and plant subcellular structures, as well as transcript and secondary metabolite accumulations. Mycorrhization rate, appearance, and developmental stages of arbuscules were identical in both types of roots. Using Mt16kOLI1Plus microarrays, transcript profiling of mycorrhizal roots showed that 222 and 73 genes exhibited at least a 2-fold induction and less than half of the expression, respectively, most of them described as AM regulated in the same direction in wild-type roots. To verify this, typical AM marker genes were analysed by quantitative reverse transcription-PCR and revealed equal transcript accumulation in transgenic and wild-type roots. Regarding secondary metabolites, several isoflavonoids and apocarotenoids, all known to accumulate in mycorrhizal wild-type roots, have been found to be up-regulated in mycorrhizal in comparison with non-mycorrhizal transgenic roots. This set of data revealed a substantial similarity in mycorrhization of transgenic and wild-type roots of Medicago truncatula, validating the use of composite plants for studying AM-related effects.
Publications

Schaarschmidt, S.; Kopka, J.; Ludwig-Müller, J.; Hause, B.; Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction Plant J. 51, 390-405, (2007) DOI: 10.1111/j.1365-313X.2007.03150.x

The effect of constitutive invertase overexpression on the arbuscular mycorrhiza (AM) is shown. The analysis of the enhanced potential for sucrose cleavage was performed with a heterozygous line of Nicotiana tabacum 35S::cwINV expressing a chimeric gene encoding apoplast‐located yeast‐derived invertase with the CaMV35S promoter. Despite the 35S promoter, roots of the transgenic plants showed no or only minor effects on invertase activity whereas the activity in leaves was increased at different levels. Plants with strongly elevated leaf invertase activity, which exhibited a strong accumulation of hexoses in source leaves, showed pronounced phenotypical effects like stunted growth and chlorosis, and an undersupply of the root with carbon. Moreover, transcripts of PR (pathogenesis related) genes accumulated in the leaves. In these plants, mycorrhization was reduced. Surprisingly, plants with slightly increased leaf invertase activity showed a stimulation of mycorrhization, particularly 3 weeks after inoculation. Compared with wild‐type, a higher degree of mycorrhization accompanied by a higher density of all fungal structures and a higher level of Glomus intraradices ‐specific rRNA was detected. Those transgenic plants showed no accumulation of hexoses in the source leaves, minor phenotypical effects and no increased PR gene transcript accumulation. The roots had even lower levels of phenolic compounds (chlorogenic acid and scopolin), amines (such as tyramine, dopamine, octopamine and nicotine) and some amino acids (including 5‐amino‐valeric acid and 4‐amino‐butyric acid), as well as an increased abscisic acid content compared with wild‐type. Minor metabolic changes were found in the leaves of these plants. The changes in metabolism and defense status of the plant and their putative role in the formation of an AM symbiosis are discussed.
Publications

Lohse, S.; Schliemann, W.; Ammer, C.; Kopka, J.; Strack, D.; Fester, T.; Organization and Metabolism of Plastids and Mitochondria in Arbuscular Mycorrhizal Roots of Medicago truncatula Plant Physiol. 139, 329-340, (2005) DOI: 10.1104/pp.105.061457

Colonization of root cortical cells by arbuscular mycorrhizal fungi leads to marked cytological changes of plastids and mitochondria. Plastids in particular are forming tubular extensions partially connecting individual organelles in a network-like way. These cytological changes correspond to an increased need for plastid and mitochondrial products during establishment and functioning of the symbiosis. The analysis of metabolite and transcript levels in mycorrhizal and nonmycorrhizal roots from Medicago truncatula revealed concomitant changes regarding a number of metabolic pathways. Our results indicate the activation of the mitochondrial tricarboxylic acid cycle and of plastid biosynthetic pathways producing fatty acids, amino acids, and apocarotenoids. These observations provide a general overview of structural and metabolic changes of plastids and mitochondria during colonization of root cortical cells by arbuscular mycorrhizal fungi.
IPB Mainnav Search