jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 1 to 6 of 6.

Preprints

Zabel, S.; Brandt, W.; Porzel, A.; Athmer, B.; Kortbeek, R. W. J.; Bleeker, P. M.; Tissier, A.; Two novel 7-epi-zingiberene derivatives with biological activity from Solanum habrochaites are produced by a single cytochrome P450 monooxygenase bioRxiv (2020) DOI: 10.1101/2020.04.21.052571

Secretions from glandular trichomes potentially protect the plant against a variety of aggressors. In the tomato genus, wild species constitute a rich source of chemical diversity produced at the leaf surface by glandular trichomes. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we identify two derivatives of 7-epi-zingiberene from S. habrochaites that had not been reported as yet. We identified them as 9-hydroxy-zingiberene and 9-hydroxy-10,11-epoxyzingiberene. Using a combination of genetics and transcriptomics we identified a single cytochrome P450 oxygenase, ShCYP71D184 that carries out two successive oxidations to generate the two sesquiterpenoids. Bioactivity assays showed that only 9-hydroxy-10,11-epoxyzingiberene exhibits substantial toxicity against B. tabaci. In addition, both 9-hydroxy-zingiberene and 9-hydroxy-10,11-epoxyzingiberene display substantial growth inhibitory activities against a range of microorganisms, including Bacillus subtilis, Phytophtora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.
Publications

Paudel, G.; Bilova, T.; Schmidt, R.; Greifenhagen, U.; Berger, R.; Tarakhovskaya, E.; Stöckhardt, S.; Balcke, G. U.; Humbeck, K.; Brandt, W.; Sinz, A.; Vogt, T.; Birkemeyer, C.; Wessjohann, L.; Frolov, A.; Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana J. Exp. Bot. 67, 6283-6295, (2016) DOI: 10.1093/jxb/erw395

Among the environmental alterations accompanying oncoming climate changes, drought is the most important factor influencing crop plant productivity. In plants, water deficit ultimately results in the development of oxidative stress and accumulation of osmolytes (e.g. amino acids and carbohydrates) in all tissues. Up-regulation of sugar biosynthesis in parallel to the increasing overproduction of reactive oxygen species (ROS) might enhance protein glycation, i.e. interaction of carbonyl compounds, reducing sugars and α-dicarbonyls with lysyl and arginyl side-chains yielding early (Amadori and Heyns compounds) and advanced glycation end-products (AGEs). Although the constitutive plant protein glycation patterns were characterized recently, the effects of environmental stress on AGE formation are unknown so far. To fill this gap, we present here a comprehensive in-depth study of the changes in Arabidopsis thaliana advanced glycated proteome related to osmotic stress. A 3 d application of osmotic stress revealed 31 stress-specifically and 12 differentially AGE-modified proteins, representing altogether 56 advanced glycation sites. Based on proteomic and metabolomic results, in combination with biochemical, enzymatic and gene expression analysis, we propose monosaccharide autoxidation as the main stress-related glycation mechanism, and glyoxal as the major glycation agent in plants subjected to drought.
Publications

Heinze, M.; Brandt, W.; Marillonnet, S.; Roos, W.; “Self” and “Non-Self” in the Control of Phytoalexin Biosynthesis: Plant Phospholipases A2 with Alkaloid-Specific Molecular Fingerprints Plant Cell 27, 448-462, (2015) DOI: 10.1105/tpc.114.135343

The overproduction of specialized metabolites requires plants to manage the inherent burdens, including the risk of self-intoxication. We present a control mechanism that stops the expression of phytoalexin biosynthetic enzymes by blocking the antecedent signal transduction cascade. Cultured cells of Eschscholzia californica (Papaveraceae) and Catharanthus roseus (Apocynaceae) overproduce benzophenanthridine alkaloids and monoterpenoid indole alkaloids, respectively, in response to microbial elicitors. In both plants, an elicitor-responsive phospholipase A2 (PLA2) at the plasma membrane generates signal molecules that initiate the induction of biosynthetic enzymes. The final alkaloids produced in the respective plant inhibit the respective PLA, a negative feedback that prevents continuous overexpression. The selective inhibition by alkaloids from the class produced in the “self” plant could be transferred to leaves of Nicotiana benthamiana via recombinant expression of PLA2. The 3D homology model of each PLA2 displays a binding pocket that specifically accommodates alkaloids of the class produced by the same plant, but not of the other class; for example, C. roseus PLA2 only accommodates C. roseus alkaloids. The interaction energies of docked alkaloids correlate with their selective inhibition of PLA2 activity. The existence in two evolutionary distant plants of phospholipases A2 that discriminate “self-made” from “foreign” alkaloids reveals molecular fingerprints left in signal enzymes during the evolution of species-specific, cytotoxic phytoalexins.
Publications

Stehle, F.; Brandt, W.; Stubbs, M. T.; Milkowski, C.; Strack, D.; Sinapoyltransferases in the light of molecular evolution Phytochemistry 70, 1652-1662, (2009) DOI: 10.1016/j.phytochem.2009.07.023

Acylation is a prevalent chemical modification that to a significant extent accounts for the tremendous diversity of plant metabolites. To catalyze acyl transfer reactions, higher plants have evolved acyltransferases that accept β-acetal esters, typically 1-O-glucose esters, as an alternative to the ubiquitously occurring CoA-thioester-dependent enzymes. Shared homology indicates that the β-acetal ester-dependent acyltransferases are derived from a common hydrolytic ancestor of the Serine CarboxyPeptidase (SCP) type, giving rise to the name Serine CarboxyPeptidase-Like (SCPL) acyltransferases. We have analyzed structure–function relationships, reaction mechanism and sequence evolution of Arabidopsis 1-O-sinapoyl-β-glucose:l-malate sinapoyltransferase (AtSMT) and related enzymes to investigate molecular changes required to impart acyltransferase activity to hydrolytic enzymes. AtSMT has maintained the catalytic triad of the hydrolytic ancestor as well as part of the H-bond network for substrate recognition to bind the acyl acceptor l-malate. A Glu/Asp substitution at the amino acid position preceding the catalytic Ser supports binding of the acyl donor 1-O-sinapoyl-β-glucose and was found highly conserved among SCPL acyltransferases. The AtSMT-catalyzed acyl transfer reaction follows a random sequential bi-bi mechanism that requires both substrates 1-O-sinapoyl-β-glucose and l-malate bound in an enzyme donor–acceptor complex to initiate acyl transfer. Together with the strong fixation of the acyl acceptor l-malate, the acquisition of this reaction mechanism favours transacylation over hydrolysis in AtSMT catalysis. The model structure and enzymatic side activities reveal that the AtSMT-mediated acyl transfer proceeds via a short-lived acyl enzyme complex. With regard to evolution, the SCPL acyltransferase clade most likely represents a recent development. The encoding genes are organized in a tandem-arranged cluster with partly overlapping functions. With other enzymes encoded by the respective gene cluster on Arabidopsis chromosome 2, AtSMT shares the enzymatic side activity to disproportionate 1-O-sinapoyl-β-glucoses to produce 1,2-di-O-sinapoyl-β-glucose. In the absence of the acyl acceptor l-malate, a residual esterase activity became obvious as a remnant of the hydrolytic ancestor. With regard to the evolution of Arabidopsis SCPL acyltransferases, our results suggest early neofunctionalization of the hydrolytic ancestor toward acyltransferase activity and acyl donor specificity for 1-O-sinapoyl-β-glucose followed by subfunctionalization to recognize different acyl acceptors.
Publications

Stehle, F.; Brandt, W.; Milkowski, C.; Strack, D.; Structure determinants and substrate recognition of serine carboxypeptidase-like acyltransferases from plant secondary metabolism FEBS Lett. 580, 6366-6374, (2006) DOI: 10.1016/j.febslet.2006.10.046

Structures of the serine carboxypeptidase‐like enzymes 1‐O ‐sinapoyl‐β‐glucose:l ‐malate sinapoyltransferase (SMT) and 1‐O ‐sinapoyl‐β‐glucose:choline sinapoyltransferase (SCT) were modeled to gain insight into determinants of specificity and substrate recognition. The structures reveal the α/β‐hydrolase fold as scaffold for the catalytic triad Ser‐His‐Asp. The recombinant mutants of SMT Ser173Ala and His411Ala were inactive, whereas Asp358Ala displayed residual activity of 20%. 1‐O ‐sinapoyl‐β‐glucose recognition is mediated by a network of hydrogen bonds. The glucose moiety is recognized by a hydrogen bond network including Trp71, Asn73, Glu87 and Asp172. The conserved Asp172 at the sequence position preceding the catalytic serine meets sterical requirements for the glucose moiety. The mutant Asn73Ala with a residual activity of 13% underscores the importance of the intact hydrogen bond network. Arg322 is of key importance by hydrogen bonding of 1‐O ‐sinapoyl‐β‐glucose and l ‐malate. By conformational change, Arg322 transfers l ‐malate to a position favoring its activation by His411. Accordingly, the mutant Arg322Glu showed 1% residual activity. Glu215 and Arg219 establish hydrogen bonds with the sinapoyl moiety. The backbone amide hydrogens of Gly75 and Tyr174 were shown to form the oxyanion hole, stabilizing the transition state. SCT reveals also the catalytic triad and a hydrogen bond network for 1‐O ‐sinapoyl‐β‐glucose recognition, but Glu274, Glu447, Thr445 and Cys281 are crucial for positioning of choline.
Publications

Hans, J.; Brandt, W.; Vogt, T.; Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis Plant J. 39, 319-333, (2004) DOI: 10.1111/j.1365-313X.2004.02133.x

In livingstone daisy (Dorotheanthus bellidiformis ), betanidin 5‐O‐glucosyltransferase (UGT73A5) is involved in the regiospecific glucosylation of betanidin and various flavonols. Based on sequence alignments several amino acid candidates which might be essential for catalysis were identified. The selected amino acids of the functionally expressed protein, suggested to be involved in substrate binding and turnover, were substituted via site‐directed mutagenesis. The substitution of two highly conserved amino acids, Glu378, located in the proposed UDP‐glucose binding site, and His22, located close to the N‐terminus, led to the complete loss of enzyme activity. A 3D model of this regiospecific betanidin and flavonoid glucosyltransferase was constructed and the active site modelled. This model was based on the crystallographic structure of a bacterial UDP‐glucose‐dependent glucosyltransferase from Amycolatopsis orientalis used as a template and the generated null mutations. To explain the observed inversion in the configuration of the bound sugar, semiempirical calculations favour an SN‐1 reaction, as one plausible alternative to the generally proposed SN‐2 mechanism discussed for plant natural product glucosyltransferases. The calculated structural data do not only explain the abstraction of a proton from the acceptor betanidin, but further imply that the reaction mechanism might also involve a catalytic triad, with similarities described for the serine protease family.
IPB Mainnav Search