jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 1 to 2 of 2.

Publications

Fester, T.; Lohse, S.; Halfmann, K.; “Chromoplast” development in arbuscular mycorrhizal roots Phytochemistry 68, 92-100, (2007) DOI: 10.1016/j.phytochem.2006.09.034

The accumulation of apocarotenoids in arbuscular mycorrhizal (AM) roots suggests a dramatic reorganization of the plastids responsible for the biosynthesis of these compounds. This review describes the cytological and biochemical characterization of this phenomenon. The results presented suggest that plastids are key organelles for the establishment of the symbiotic interface of the AM symbiosis. In addition, a complex interplay of various plant cell components during the different functional phases of this interface is suggested. Arbuscule degradation appears to be of particular interest, as it correlates with the formation of the most extensive plastid structures and with apocarotenoid accumulation.
Publications

Fester, T.; Hause, B.; Schmidt, D.; Halfmann, K.; Schmidt, J.; Wray, V.; Hause, G.; Strack, D.; Occurrence and Localization of Apocarotenoids in Arbuscular Mycorrhizal Plant Roots Plant Cell Physiol. 43, 256-265, (2002) DOI: 10.1093/pcp/pcf029

The core structure of the yellow pigment from arbuscular mycorrhizal (AM) maize roots contains the apocarotenoids mycorradicin (an acyclic C14 polyene) and blumenol C cellobioside (a C13 cyclohexenone diglucoside). The pigment seems to be a mixture of different esterification products of these apocarotenoids. It is insoluble in water and accumulates as hydrophobic droplets in the vacuoles of root cortical cells. Screening 58 species from 36 different plant families, we detected mycorradicin in mycorrhizal roots of all Liliopsida analyzed and of a considerable number of Rosopsida, but also species were found in which mycorradicin was undetectable in mycorrhizal roots. Kinetic experiments and microscopic analyses indicate that accumulation of the yellow pigment is correlated with the concomitant degradation of arbuscules and the extensive plastid network covering these haustorium-like fungal structures. The role of the apocarotenoids in mycorrhizal roots is still unknown. The potential C40 carotenoid precursors, however, are more likely to be of functional importance in the development and functioning of arbuscules.
IPB Mainnav Search