jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 1 to 6 of 6.

Publications

Peters, K.; Worrich, A.; Weinhold, A.; Alka, O.; Balcke, G.; Birkemeyer, C.; Bruelheide, H.; Calf, O. W.; Dietz, S.; Dührkop, K.; Gaquerel, E.; Heinig, U.; Kücklich, M.; Macel, M.; Müller, C.; Poeschl, Y.; Pohnert, G.; Ristok, C.; Rodríguez, V. M.; Ruttkies, C.; Schuman, M.; Schweiger, R.; Shahaf, N.; Steinbeck, C.; Tortosa, M.; Treutler, H.; Ueberschaar, N.; Velasco, P.; Weiß, B. M.; Widdig, A.; Neumann, S.; van Dam, N. M.; Current Challenges in Plant Eco-Metabolomics Int. J. Mol. Sci. 19, 1385, (2018) DOI: 10.3390/ijms19051385

The relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales. These include physiological, phenotypic and morphological responses of plants and communities to environmental changes and also interactions with other organisms. Traditionally, research in biochemistry and ecology comes from two different directions and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic processes in individuals at physiological and cellular scales. Generally, they take a bottom-up approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies usually focus on extrinsic processes acting upon organisms at population and community scales and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a transdisciplinary research discipline that links biochemistry and ecology and connects the distinct spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical interactions of plants at various ecological levels, mainly plant–organismal interactions, and discuss related examples from other domains. We present recent developments and highlight advancements in Eco-Metabolomics over the last decade from various angles. We further address the five key challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools and workflows. The presented solutions to these challenges will advance connecting the distinct spatiotemporal scales and bridging biochemistry and ecology
Publications

Frolov, A.; Bilova, T.; Paudel, G.; Berger, R.; Balcke, G. U.; Birkemeyer, C.; Wessjohann, L. A.; Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model J. Plant Physiol. 208, 70-83, (2017) DOI: 10.1016/j.jplph.2016.09.013

Drought is one of the most important environmental stressors resulting in increasing losses of crop plant productivity all over the world. Therefore, development of new approaches to increase the stress tolerance of crop plants is strongly desired. This requires precise and adequate modeling of drought stress. As this type of stress manifests itself as a steady decrease in the substrate water potential (ψw), agar plates infused with polyethylene glycol (PEG) are the perfect experimental tool: they are easy in preparation and provide a constantly reduced ψw, which is not possible in soil models. However, currently, this model is applicable only to seedlings and cannot be used for evaluation of stress responses in mature plants, which are obviously the most appropriate objects for drought tolerance research. To overcome this limitation, here we introduce a PEG-based agar infusion model suitable for 6–8-week-old A. thaliana plants, and characterize, to the best of our knowledge for the first time, the early drought stress responses of adult plants grown on PEG-infused agar. We describe essential alterations in the primary metabolome (sugars and related compounds, amino acids and polyamines) accompanied by qualitative and quantitative changes in protein patterns: up to 87 unique stress-related proteins were annotated under drought stress conditions, whereas further 84 proteins showed a change in abundance. The obtained proteome patterns differed slightly from those reported for seedlings and soil-based models.
Publications

Bilova, T.; Paudel, G.; Shilyaev, N.; Schmidt, R.; Brauch, D.; Tarakhovskaya, E.; Milrud, S.; Smolikova, G.; Tissier, A.; Vogt, T.; Sinz, A.; Brandt, W.; Birkemeyer, C.; Wessjohann, L. A.; Frolov, A.; Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation hot spots J. Biol. Chem. 292, 15758-15776, (2017) DOI: 10.1074/jbc.M117.794537

Glycation is a post-translational modification resulting from the interaction of protein amino and guanidino groups with carbonyl compounds. Initially, amino groups react with reducing carbohydrates, yielding Amadori and Heyns compounds. Their further degradation results in formation of advanced glycation end products (AGEs), also originating from α-dicarbonyl products of monosaccharide autoxidation and primary metabolism. In mammals, AGEs are continuously formed during the life of the organism, accumulate in tissues, are well-known markers of aging, and impact age-related tissue stiffening and atherosclerotic changes. However, the role of AGEs in age-related molecular alterations in plants is still unknown. To fill this gap, we present here a comprehensive study of the age-related changes in the Arabidopsis thaliana glycated proteome, including the proteins affected and specific glycation sites therein. We also consider the qualitative and quantitative changes in glycation patterns in terms of the general metabolic background, pathways of AGE formation, and the status of plant anti-oxidative/anti-glycative defense. Although the patterns of glycated proteins were only minimally influenced by plant age, the abundance of 96 AGE sites in 71 proteins was significantly affected in an age-dependent manner and clearly indicated the existence of age-related glycation hot spots in the plant proteome. Homology modeling revealed glutamyl and aspartyl residues in close proximity (less than 5 Å) to these sites in three aging-specific and eight differentially glycated proteins, four of which were modified in catalytic domains. Thus, the sites of glycation hot spots might be defined by protein structure that indicates, at least partly, site-specific character of glycation.
Publications

Paudel, G.; Bilova, T.; Schmidt, R.; Greifenhagen, U.; Berger, R.; Tarakhovskaya, E.; Stöckhardt, S.; Balcke, G. U.; Humbeck, K.; Brandt, W.; Sinz, A.; Vogt, T.; Birkemeyer, C.; Wessjohann, L.; Frolov, A.; Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana J. Exp. Bot. 67, 6283-6295, (2016) DOI: 10.1093/jxb/erw395

Among the environmental alterations accompanying oncoming climate changes, drought is the most important factor influencing crop plant productivity. In plants, water deficit ultimately results in the development of oxidative stress and accumulation of osmolytes (e.g. amino acids and carbohydrates) in all tissues. Up-regulation of sugar biosynthesis in parallel to the increasing overproduction of reactive oxygen species (ROS) might enhance protein glycation, i.e. interaction of carbonyl compounds, reducing sugars and α-dicarbonyls with lysyl and arginyl side-chains yielding early (Amadori and Heyns compounds) and advanced glycation end-products (AGEs). Although the constitutive plant protein glycation patterns were characterized recently, the effects of environmental stress on AGE formation are unknown so far. To fill this gap, we present here a comprehensive in-depth study of the changes in Arabidopsis thaliana advanced glycated proteome related to osmotic stress. A 3 d application of osmotic stress revealed 31 stress-specifically and 12 differentially AGE-modified proteins, representing altogether 56 advanced glycation sites. Based on proteomic and metabolomic results, in combination with biochemical, enzymatic and gene expression analysis, we propose monosaccharide autoxidation as the main stress-related glycation mechanism, and glyoxal as the major glycation agent in plants subjected to drought.
Publications

Bilova, T.; Lukasheva, E.; Brauch, D.; Greifenhagen, U.; Paudel, G.; Tarakhovskaya, E.; Frolova, N.; Mittasch, J.; Balcke, G. U.; Tissier, A.; Osmolovskaya, N.; Vogt, T.; Wessjohann, L. A.; Birkemeyer, C.; Milkowski, C.; Frolov, A.; A Snapshot of the Plant Glycated Proteome: STRUCTURAL, FUNCTIONAL, AND MECHANISTIC ASPECTS J. Biol. Chem. 291, 7621-7636, (2016) DOI: 10.1074/jbc.M115.678581

Glycation is the reaction of carbonyl compounds (reducing sugars and α-dicarbonyls) with amino acids, lipids, and proteins, yielding early and advanced glycation end products (AGEs). The AGEs can be formed via degradation of early glycation intermediates (glycoxidation) and by interaction with the products of monosaccharide autoxidation (autoxidative glycosylation). Although formation of these potentially deleterious compounds is well characterized in animal systems and thermally treated foods, only a little information about advanced glycation in plants is available. Thus, the knowledge of the plant AGE patterns and the underlying pathways of their formation are completely missing. To fill this gap, we describe the AGE-modified proteome of Brassica napus and characterize individual sites of advanced glycation by the methods of liquid chromatography-based bottom-up proteomics. The modification patterns were complex but reproducible: 789 AGE-modified peptides in 772 proteins were detected in two independent experiments. In contrast, only 168 polypeptides contained early glycated lysines, which did not resemble the sites of advanced glycation. Similar observations were made with Arabidopsis thaliana. The absence of the early glycated precursors of the AGE-modified protein residues indicated autoxidative glycosylation, but not glycoxidation, as the major pathway of AGE formation. To prove this assumption and to identify the potential modifying agents, we estimated the reactivity and glycative potential of plant-derived sugars using a model peptide approach and liquid chromatography-mass spectrometry-based techniques. Evaluation of these data sets together with the assessed tissue carbohydrate contents revealed dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, ribulose, erythrose, and sucrose as potential precursors of plant AGEs.
Books and chapters

Bilova, T.; Greifenhagen, U.; Paudel, G.; Lukasheva, E.; Brauch, D.; Osmolovskaya, N.; Tarakhovskaya, E.; Balcke, G. U.; Tissier, A.; Vogt, T.; Milkowski, C.; Birkemeyer, C.; Wessjohann, L.; Frolov, A.; Glycation of Plant Proteins under Environmental Stress — Methodological Approaches, Potential Mechanisms and Biological Role (Shanker, A. K. & Shanker, C., eds.). 295-316, (2016) DOI: 10.5772/61860

Environmental stress is one of the major factors reducing crop productivity. Due to the oncoming climate changes, the effects of drought and high light on plants play an increasing role in modern agriculture. These changes are accompanied with a progressing contamination of soils with heavy metals. Independent of their nature, environmental alterations result in development of oxidative stress, i.e. increase of reactive oxygen species (ROS) contents, and metabolic adjustment, i.e. accumulation of soluble primary metabolites (amino acids and sugars). However, a simultaneous increase of ROS and sugar concentrations ultimately results in protein glycation, i.e. non-enzymatic interaction of reducing sugars or their degradation products (α-dicarbonyls) with proteins. The eventually resulting advanced glycation end-products (AGEs) are known to be toxic and pro-inflammatory in mammals. Recently, their presence was unambiguously demonstrated in vivo in stressed Arabidopsis thaliana plants. Currently, information on protein targets, modification sites therein, mediators and mechanisms of plant glycation are being intensively studied. In this chapter, we comprehensively review the methodological approaches for plant glycation research and discuss potential mechanisms of AGE formation under stress conditions. On the basis of these patterns and additional in vitro experiments, the pathways and mechanisms of plant glycation can be proposed.
IPB Mainnav Search