jump to searchjump to navigationjump to content

Publications - Bioorganic Chemistry

Sort by: Year Type of publication

Displaying results 1 to 10 of 29.

Publications

Ziegler, J.; Brandt, W.; Geißler, R.; Facchini, P. J.; Removal of Substrate Inhibition and Increase in Maximal Velocity in the Short Chain Dehydrogenase/Reductase Salutaridine Reductase Involved in Morphine Biosynthesis J. Biol. Chem. 284, 26758-26767, (2009) DOI: 10.1074/jbc.M109.030957

Salutaridine reductase (SalR, EC 1.1.1.248) catalyzes the stereospecific reduction of salutaridine to 7(S)-salutaridinol in the biosynthesis of morphine. It belongs to a new, plant-specific class of short-chain dehydrogenases, which are characterized by their monomeric nature and increased length compared with related enzymes. Homology modeling and substrate docking suggested that additional amino acids form a novel α-helical element, which is involved in substrate binding. Site-directed mutagenesis and subsequent studies on enzyme kinetics revealed the importance of three residues in this element for substrate binding. Further replacement of eight additional residues led to the characterization of the entire substrate binding pocket. In addition, a specific role in salutaridine binding by either hydrogen bond formation or hydrophobic interactions was assigned to each amino acid. Substrate docking also revealed an alternative mode for salutaridine binding, which could explain the strong substrate inhibition of SalR. An alternate arrangement of salutaridine in the enzyme was corroborated by the effect of various amino acid substitutions on substrate inhibition. In most cases, the complete removal of substrate inhibition was accompanied by a substantial loss in enzyme activity. However, some mutations greatly reduced substrate inhibition while maintaining or even increasing the maximal velocity. Based on these results, a double mutant of SalR was created that exhibited the complete absence of substrate inhibition and higher activity compared with wild-type SalR.
Publications

Ziegler, J.; Facchini, P. J.; Geißler, R.; Schmidt, J.; Ammer, C.; Kramell, R.; Voigtländer, S.; Gesell, A.; Pienkny, S.; Brandt, W.; Evolution of morphine biosynthesis in opium poppy Phytochemistry 70, 1696-1707, (2009) DOI: 10.1016/j.phytochem.2009.07.006

Benzylisoquinoline alkaloids (BIAs) are a group of nitrogen-containing plant secondary metabolites comprised of an estimated 2500 identified structures. In BIA metabolism, (S)-reticuline is a key branch-point intermediate that can be directed into several alkaloid subtypes with different structural skeleton configurations. The morphinan alkaloids are one subclass of BIAs produced in only a few plant species, most notably and abundantly in the opium poppy (Papaver somniferum). Comparative transcriptome analysis of opium poppy and several other Papaver species that do not accumulate morphinan alkaloids showed that known genes encoding BIA biosynthetic enzymes are expressed at higher levels in P. somniferum. Three unknown cDNAs that are co-ordinately expressed with several BIA biosynthetic genes were identified as enzymes in the pathway. One of these enzymes, salutaridine reductase (SalR), which is specific for the production of morphinan alkaloids, was isolated and heterologously overexpressed in its active form not only from P. somniferum, but also from Papaver species that do not produce morphinan alkaloids. SalR is a member of a class of short chain dehydrogenase/reductases (SDRs) that are active as monomers and possess an extended amino acid sequence compared with classical SDRs. Homology modelling and substrate docking revealed the substrate binding site for SalR. The amino acids residues conferring salutaridine binding were compared to several members of the SDR family from different plant species, which non-specifically reduce (−)-menthone to (+)-neomenthol. Previously, it was shown that some of these proteins are involved in plant defence. The recruitment of specific monomeric SDRs from monomeric SDRs involved in plant defence is discussed.
Publications

Wessjohann, L. A.; Rivera, D. G.; Vercillo, O. E.; Multiple Multicomponent Macrocyclizations (MiBs): A Strategic Development Toward Macrocycle Diversity Chem. Rev. 109, 796-814, (2009) DOI: 10.1021/cr8003407

0
Publications

Wessjohann, L.; Zakharova, S.; Schulze, D.; Kufka, J.; Weber, R.; Bräuer, L.; Brandt, W.; Enzymatic C–C-Coupling Prenylation: Bioinformatics – Modelling – Mechanism – Protein-Redesign – Biocatalytic Application Chimia 63, 340-344, (2009) DOI: 10.2533/chimia.2009.340

The functional role of isoprenoids and especially enzymatic prenylation in nature and human application is briefly covered, with the focus on bioinformatical, mechanistical and structural aspects of prenyltransferases and terpene synthases. These enzymes are as yet underrepresented but perspectively useful biocatalysts for C–C couplings of aromatic and isoprenoid substrates. Some examples of the successful use in chemoenzymatic synthesis are given including an application for the otherwise difficult synthesis of Kuhistanol A. Computational structure-based site-directed mutagenesis can be used for rational enzyme redesign to obtain altered substrate and product specificities, which is demonstrated for terpene cyclases.
Publications

Stehle, F.; Brandt, W.; Stubbs, M. T.; Milkowski, C.; Strack, D.; Sinapoyltransferases in the light of molecular evolution Phytochemistry 70, 1652-1662, (2009) DOI: 10.1016/j.phytochem.2009.07.023

Acylation is a prevalent chemical modification that to a significant extent accounts for the tremendous diversity of plant metabolites. To catalyze acyl transfer reactions, higher plants have evolved acyltransferases that accept β-acetal esters, typically 1-O-glucose esters, as an alternative to the ubiquitously occurring CoA-thioester-dependent enzymes. Shared homology indicates that the β-acetal ester-dependent acyltransferases are derived from a common hydrolytic ancestor of the Serine CarboxyPeptidase (SCP) type, giving rise to the name Serine CarboxyPeptidase-Like (SCPL) acyltransferases. We have analyzed structure–function relationships, reaction mechanism and sequence evolution of Arabidopsis 1-O-sinapoyl-β-glucose:l-malate sinapoyltransferase (AtSMT) and related enzymes to investigate molecular changes required to impart acyltransferase activity to hydrolytic enzymes. AtSMT has maintained the catalytic triad of the hydrolytic ancestor as well as part of the H-bond network for substrate recognition to bind the acyl acceptor l-malate. A Glu/Asp substitution at the amino acid position preceding the catalytic Ser supports binding of the acyl donor 1-O-sinapoyl-β-glucose and was found highly conserved among SCPL acyltransferases. The AtSMT-catalyzed acyl transfer reaction follows a random sequential bi-bi mechanism that requires both substrates 1-O-sinapoyl-β-glucose and l-malate bound in an enzyme donor–acceptor complex to initiate acyl transfer. Together with the strong fixation of the acyl acceptor l-malate, the acquisition of this reaction mechanism favours transacylation over hydrolysis in AtSMT catalysis. The model structure and enzymatic side activities reveal that the AtSMT-mediated acyl transfer proceeds via a short-lived acyl enzyme complex. With regard to evolution, the SCPL acyltransferase clade most likely represents a recent development. The encoding genes are organized in a tandem-arranged cluster with partly overlapping functions. With other enzymes encoded by the respective gene cluster on Arabidopsis chromosome 2, AtSMT shares the enzymatic side activity to disproportionate 1-O-sinapoyl-β-glucoses to produce 1,2-di-O-sinapoyl-β-glucose. In the absence of the acyl acceptor l-malate, a residual esterase activity became obvious as a remnant of the hydrolytic ancestor. With regard to the evolution of Arabidopsis SCPL acyltransferases, our results suggest early neofunctionalization of the hydrolytic ancestor toward acyltransferase activity and acyl donor specificity for 1-O-sinapoyl-β-glucose followed by subfunctionalization to recognize different acyl acceptors.
Publications

Shabaan, S.; Ba, L. A.; Abbas, M.; Burkholz, T.; Denkert, A.; Gohr, A.; Wessjohann, L. A.; Sasse, F.; Weber, W.; Jacob, C.; Multicomponent reactions for the synthesis of multifunctional agents with activity against cancer cells Chem. Commun. 4702, (2009) DOI: 10.1039/B823149D

Multicomponent Passerini and Ugi reactions enable the fast and efficient synthesis of redox-active multifunctional selenium and tellurium compounds, of which some show considerable cytotoxicity against specific cancer cells.
Publications

Rivera, D. G.; Wessjohann, L. A.; Architectural Chemistry: Synthesis of Topologically Diverse Macromulticycles by Sequential Multiple Multicomponent Macrocyclizations J. Am. Chem. Soc. 131, 3721-3732, (2009) DOI: 10.1021/ja809005k

How can conformationally restricted polyvalent molecules be accessed rapidly? A sequential approach involving two multiple multicomponent macrocyclizations including bifunctional building blocks (MiBs) with up to five Ugi-four-component reactions (Ugi-4CR) has been developed to produce nonsymmetric macromulticycles. Topologically diverse structures, such as nonsymmetric cryptands and clam- and igloo-shaped macromulticycles were obtained in reaction sequences that comprise the incorporation of up to 13 building blocks by forming 20 new bonds without purification of intermediates. Cryptands were produced by a sequential-MiB procedure in which the Ugi-type functional groups of the second MiB are attached to the peptoid backbones from the first multicomponent macrocyclization. These macrobicycles show two completely new features; i.e., three different tether chains can be obtained in one pot, and tertiary amide bonds are used as bridgeheads. Alternatively, the same reaction sequence, i.e., MiB/deprotection/MiB, can be used to produce clam-shaped macrobicycles, demonstrated with a tetrafunctional cholanic steroid as a hinge moiety. Macrotetracycles endowed with igloo-type topologies are accessible by an advanced protocol featuring consecutive double and 3-fold Ugi-4CR-based macrocyclizations. Other building blocks than cholanic steroids employed include aryl, heterocyclic, polyether, and other recognition motifs. The examples given are a first-generation demonstration of an “architectural chemistry” that allows to construct three-dimensional multimotif covalent molecular “buildings” of unprecedented complexity by design.
Publications

Rhoden, C. R. B.; Rivera, D. G.; Kreye, O.; Bauer, A. K.; Westermann, B.; Wessjohann, L. A.; Rapid Access to N-Substituted Diketopiperazines by One-Pot Ugi-4CR/Deprotection+Activation/Cyclization (UDAC) J. Comb. Chem. 11, 1078-1082, (2009) DOI: 10.1021/cc900106u

The most efficient diversity generating approaches to heterocycles are combinations of a multicomponent (MCR) with a cyclization reaction, for example, by Ugi-deprotection-cylization (UDC) protocols. If the desired post-Ugi reaction requires more than one deprotection, for example of two initially protected Ugi-reactive groups, or if it requires additional activation, for example, by an Ugi-activation-cyclization (UAC), either the isolation of intermediates or a sequential process or both become necessary. A recently introduced convertible isonitrile reagent allows a mild and chemoselective in situ post-Ugi activation of the isonitrile-born carboxylate with simultaneous deprotection of the nucleophilic amine, that is, liberation and activation of two Ugi-reactive groups, if desired also under subsequent lactam formation. This is exemplified by the synthesis of peptide-peptoid diketopiperazines.
Publications

Pienkny, S.; Brandt, W.; Schmidt, J.; Kramell, R.; Ziegler, J.; Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L) Plant J. 60, 56-67, (2009) DOI: 10.1111/j.1365-313X.2009.03937.x

The benzylisoquinoline alkaloids are a highly diverse group of about 2500 compounds which accumulate in a species‐specific manner. Despite the numerous compounds which could be identified, the biosynthetic pathways and the participating enzymes or cDNAs could be characterized only for a few selected members, whereas the biosynthesis of the majority of the compounds is still largely unknown. In an attempt to characterize additional biosynthetic steps at the molecular level, integration of alkaloid and transcript profiling across Papaver species was performed. This analysis showed high expression of an expressed sequence tag (EST) of unknown function only in Papaver somniferum varieties. After full‐length cloning of the open reading frame and sequence analysis, this EST could be classified as a member of the class II type O ‐methyltransferase protein family. It was related to O ‐methyltransferases from benzylisoquinoline biosynthesis, and the amino acid sequence showed 68% identical residues to norcoclaurine 6‐O ‐methyltransferase. However, rather than methylating norcoclaurine, the recombinant protein methylated norreticuline at position seven with a K m of 44 μm using S ‐adenosyl‐l ‐methionine as a cofactor. Of all substrates tested, only norreticuline was converted. Even minor changes in the benzylisoquinoline backbone were not tolerated by the enzyme. Accordingly, the enzyme was named norreticuline 7–O ‐methyltransferase (N7OMT). This enzyme represents a novel O ‐methyltransferase in benzylisoquinoline metabolism. Expression analysis showed slightly increased expression of N7OMT in P. somniferum varieties containing papaverine, suggesting its involvement in the partially unknown biosynthesis of this pharmaceutically important compound.
Publications

Pando, O.; Dörner, S.; Preusentanz, R.; Denkert, A.; Porzel, A.; Richter, W.; Wessjohann, L.; First Total Synthesis of Tubulysin B Org. Lett. 11, 5567-5569, (2009) DOI: 10.1021/ol902320w

The first total synthesis of tubulysin B is described. The aziridine route to tubuphenylalanine (Tup) of the tubulysin D/U-series could not be transferred to the synthesis of tubutyrosine (blue moiety). Therefore, tubutyrosine (Tut) was synthesized by a Wittig olefination/diastereoselective catalytic reduction sequence. Interestingly, the C-2 epimer of tubulysin B has a cytotoxic activity almost identical to the natural diastereomer.
IPB Mainnav Search