jump to searchjump to navigationjump to content

Publications - Bioorganic Chemistry

Sort by: Year Type of publication

Displaying results 1 to 4 of 4.

Publications

Doering, M.; Ba, L. A.; Lilienthal, N.; Nicco, C.; Scherer, C.; Abbas, M.; Zada, A. A. P.; Coriat, R.; Burkholz, T.; Wessjohann, L.; Diederich, M.; Batteux, F.; Herling, M.; Jacob, C.; Synthesis and Selective Anticancer Activity of Organochalcogen Based Redox Catalysts J. Med. Chem. 53, 6954-6963, (2010) DOI: 10.1021/jm100576z

Many tumor cells exhibit a disturbed intracellular redox state resulting in higher levels of reactive oxygen species (ROS). As these contribute to tumor initiation and sustenance, catalytic redox agents combining significant activity with substrate specificity promise high activity and selectivity against oxidatively stressed malignant cells. We describe here the design and synthesis of novel organochalcogen based redox sensor/effector catalysts. Their selective anticancer activity at submicromolar and low micromolar concentrations was established here in a range of tumor entities in various biological systems including cell lines, primary tumor cell cultures, and animal models. In the B-cell derived chronic lymphocytic leukemia (CLL), for instance, such compounds preferentially induce apoptosis in the cancer cells while peripheral blood mononuclear cells (PBMC) from healthy donors and the subset of normal B-cells remain largely unaffected. In support of the concept of sensor/effector based ROS amplification, we are able to demonstrate that underlying this selective activity against CLL cells are pre-existing elevated ROS levels in the leukemic cells compared to their nonmalignant counterparts. Furthermore, the catalysts act in concert with certain chemotherapeutic drugs in several carcinoma cell lines to decrease cell proliferation while showing no such interactions in normal cells. Overall, the high efficacy and selectivity of (redox) catalytic sensor/effector compounds warrant further, extensive testing toward transfer into the clinical arena.
Publications

Busch, C.; Jacob, C.; Anwar, A.; Burkholz, T.; Ba, L. A.; Cerella, C.; Diederich, M.; Brandt, W.; Wessjohann, L.; Montenarh, M.; Diallylpolysulfides induce growth arrest and apoptosis Int. J. Oncol. 36, 743-749, (2010) DOI: 10.3892/ijo_00000550

Garlic-derived organo sulphur compounds such as diallylsulfides provide a significant protection against carcinogenesis. Chemically synthesized, and highly pure diallylsulfides with a chain of 1-4 sulphur atoms, as well as a range of control compounds, were employed to investigate the influence of these agents on cell viability, cell cycle arrest and induction of apoptosis in HCT116 human colon cancer cells. Diallyltrisulfide, and even more efficiently diallyltetrasulfide treatment of HCT116 cells led to a reduced cell viability, cell cycle arrest and apoptosis. A similar activity was found for the propyl-analogues, while mono- and disulfides were considerably less active. Initial calculations point toward the ability of tri- and tetrasulfides to form reactive oxygen species (ROS). Here, we found that the induction of apoptosis was indeed dependent on the redox-state of the cell, with anti-oxidants being able to prevent sulfide-induced apoptosis. Furthermore, using HCT116 cells which were either positive or negative for p53 revealed that p53 is clearly dispensable for induction of apoptosis. Growth arrest and induction of apoptosis is associated with a considerable reduction of the level of cdc25C. These results support the therapeutic potential of polysulfides and allow insight into the mechanisms based on the polysulfide biochemistry.
Publications

Shabaan, S.; Ba, L. A.; Abbas, M.; Burkholz, T.; Denkert, A.; Gohr, A.; Wessjohann, L. A.; Sasse, F.; Weber, W.; Jacob, C.; Multicomponent reactions for the synthesis of multifunctional agents with activity against cancer cells Chem. Commun. 4702, (2009) DOI: 10.1039/B823149D

Multicomponent Passerini and Ugi reactions enable the fast and efficient synthesis of redox-active multifunctional selenium and tellurium compounds, of which some show considerable cytotoxicity against specific cancer cells.
Publications

Mecklenburg, S.; Shaaban, S.; Ba, L. A.; Burkholz, T.; Schneider, T.; Diesel, B.; Kiemer, A. K.; Röseler, A.; Becker, K.; Reichrath, J.; Stark, A.; Tilgen, W.; Abbas, M.; Wessjohann, L. A.; Sasse, F.; Jacob, C.; Exploring synthetic avenues for the effective synthesis of selenium- and tellurium-containing multifunctional redox agents Org. Biomol. Chem. 7, 4753, (2009) DOI: 10.1039/B907831B

Various human illnesses, including several types of cancer and infectious diseases, are related to changes in the cellular redox homeostasis. During the last decade, several approaches have been explored which employ such disturbed redox balances for the benefit of therapy. Compounds able to modulate the intracellular redox state of cells have been developed, which effectively, yet also selectively, appear to kill cancer cells and a range of pathogenic microorganisms. Among the various agents employed, certain redox catalysts have shown considerable promise since they are non-toxic on their own yet develop an effective, often selective cytotoxicity in the presence of the ‘correct’ intracellular redox partners. Aminoalkylation, amide coupling and multicomponent reactions are suitable synthetic methods to generate a vast number of such multifunctional catalysts, which are chemically diverse and, depending on their structure, exhibit various interesting biological activities.
IPB Mainnav Search